Question | Answer Additional guidance Mark
number
2 The following assessment objectives are (10)

assessed:

AO2.1a
AO2.1b
AO3.1

AO3.2a
AO3.2b
AO3.2c

Award marks as shown.

Add ':" at end of the line:

if (choice == 'y'): (1)

Add missing ')’ before *:” in the line:

for num in range(5, -1, -1): (1)

Add missing " before end bracket in the line:
print("Goodbye") (1)

Printing a suitable question for the user based
on context, i.e. “"Do you want me to sing?” (1)

Accept user input of 'y" and 'n’ (1)
Changing the variable name *'x’ to a more

meaningful name (1) such as ‘choice’
throughout the code

Addition of comment indicating reverse
stepping (1)

One mark each for insertion of white space to
aid readability, up to a maximum of two
marks (2)

Correct output for 'y’ (count down 5 to 0 and
then Goodbye) and correct output for ‘n’
(Goodbye) (1)

PMT

D =] &y LN L b

S R e s e e e
Y B O =T T T« - T B R & TR SO FO R O T i BT

¥ Global variables

===> Change the identifier x to & more meaningful name

choice = "V

¥ Main program

¥ ===> Display a suitable guestion to the user

print ("would you like me to sing?™)

¥ ===> Accept the user's input (no validation reguired)
choice = input("Choose 'y' for yes and 'm' for no™)

if (choice == "y"):
¥ ===> Add a comment to explain the effect of the last -1 in this call
Counting backwards by using step as -1
for num in range(>, -1, -1):
print(num, "green bottles sitting on the wall")

print("Goodbye")

PMT

Question | Answer Additional guidance Mark
number
3 The following assessment objectives are e Fixing error with (13)

assessed:

e AO2.1b
e AO03.1

e AO03.2a
e AO03.2b
e AO03.2c

Award marks as shown.

Fixing runtime error by coercion of input to
‘int’ (1)
e Fixing errors by using modulus (1)

e Use of at least one appropriate 'if’ statement

in the solution (1)
e Adding validation for input numbers using:
o relational operator (<=20) (1)
o relational operator (>=1) (1)
0 correct Boolean operator (and/or) (1)

e Corrects output message for even numbers
and odd numbers (1)

Levels-based mark scheme to a maximum of 6,
from:

e Solution design (3)
e Functionality (3)

odd numbers can
be done in several
different ways (see
examples)

Award any
accurate tests for
validation range

Considerations:

6.1.6 Using test
data to evaluate a
program, such as
extreme data [a
character], normal
data [1...20] and
boundary data [0,
21]

6.2.2 Appropriate
use of sequencing,
selection and
repetition

6.1.1 Use analysis
to solve problems

6.1.6 Use logical
reasoning to
evaluate efficiency
(i.e. reduce tests)

PMT

Solution design (levels-based mark scheme)

0 1 2 3 Max.
There has been little attempt to There has been some attempt to The problem has been decomposed 3
decompose the problem. decompose the problem. clearly into component parts.

- Some of the component parts of Most of the component parts of the The component parts of the

3 the problem can be seen in the problem can be seen in the problem can be seen clearly in the

g solution, although this will not be solution. solution.

g complete. Most parts of the logic are clear The logic is clear and appropriate

L) Some parts of the logic are clear and appropriate to the problem. to the problem.

@ and appropriate to the problem. The use of variables and data The choice of variables and data

& The use of variables and data structures is mostly appropriate. structures is appropriate to the

03 strubc.itureg, ?_pp_ropérlate to the The choice of programming problem.

5 problem, is limited. constructs is mostly appropriate to The choice of programming

< The choice of programming the problem. constructs is accurate and
constructs, appropriate to the appropriate to the problem.
problem, is limited.

PMT

Functionality (levels-based mark scheme)

0 1 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the

® program are incorrect or program are complete, providing a program are complete, providing a

5 incomplete, providing a program of functional program that meets functional program that fully meets

® limited functionality that meets most of the stated requirements. the given requirements.

E some of the given requirements. e Program outputs are mostly e Program outputs are accurate,

E e Program outputs are of limited accurate and informative. informative, and suitable for the

° accuracy and/or provide limited e Program responds predictably to user.

3 information. most of the anticipated input. e Program responds predictably to

I e Program responds predictably to « Solution may not be robust within anticipated input.

o~ some of the anticipated input. the constraints of the problem. e Solution is robust within the
e Solution is not robust and may constraints of the problem.

crash on anticipated or provided
input.

PMT

D =] &y o W ka2

T B o T S T e T = = T = S S
S R N Vo T ST B M 0 BT S PO R O B S BT

e Selution 1 —————————
¥ Coerce the input from string to integsr

num = int (input ("Pleasze enter a number (1

¥ Check for wvalid input numbers
if (num >=1 and num <= 20):
if (num % 2 == 0):
print (num, "is even")

else:

o 200N

¥ If num is not even, then it must be odd

print (num, "is odd")

else:

print ("Invalid input™) # Error message for bad input

PMT

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59

60

PMT

ittt Solution 2 ——————————
num = int (input ("Please enter a number (1 2007))
if (num < 1):
print ("Bzd input"™)
elif (num > 20) :
print ("Bad input™)
elif (num % 2 == 0):
print (num, "is =ven')
else:
print (num, "is odd"™)
¥ —————- Solution 3 ——————————
num = int (input ("Please enter a number (1 2007Y)

if (num >= 1) and (num <= Z20) :
if (num % 2 0y :
print (num, " is even'")
elif (num %z '= 0):
Extra check for odd
is odd™)

print (num, "
else:

print ("Bzd input"™) ¥ Error message for the user

Solution 4
int (input ("Flease enter =z 20)™))
¥ FKeeps looping until a good input is identified

1Y oxr (num > 20) :

print ("Invalid input™)

while {(num <

num = int (input ("Please enter a number (1 L20)))

if (num % 2
print (num,

0y :
"iz even")
elsze:

print (num, "is odd")

Question | Answer Additional guidance | Mark
number
4 The following assessment objectives are (15)

assessed:

AO2.1b
AO3.1

AO3.2a
AO3.2b
AO3.2c

Award marks as shown.

Use of comments, white space and layout to
aid readability (1)

Initial input done outside loop, to handle first
entry is ‘0’ (1)

Repetition (while) used as outermost loop (1)

‘elif (year > 13)" is placed later in the logic
than ‘if (year < 1)’ (1)

‘elif (year < 12)" is placed later in the logic
than ‘elif (year < 7)" (1)

Accepting next round of input done inside loop
(1)

Validation messages match validation tests:
o Year too small (1)

o Year too big (1)

Institution messages match tests:

o Primary (1)

o Secondary (1)

o College (1)

Correct outputs for each set of test data:

o 0 = exiting (1)

o 1and 6 = Primary (1)

o 7 and 11 = Secondary (1)

o 12 = College (1)

PMT

0 =1 &y LA s W ka2

S I N i e e i e e
O TS B U< T o s SRS B T BN VU R (S T S = R o]

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

PMT

¥ Global varizbles
e
year = 0 ¥ Do not move this line

stryear = "" ¥ Do not move this line

Main program

Put the lines inteo the correct order to scolve the problem.

¥ A user types in a year group. The program indicates which stage

¥ of education the wyvear group belongs to. The program loops until

the user enters 0.

¥ Example:

¥ Input output

= Exits program

¥# 1, 2, 3, 4, 5, &€ Primary

7, 8, 9, 10, 11 Secondary

12, 13 College

¥ Scluticn 1 ————————

¥ Prime the loop, just in case the first entry is '0°'
str¥ear = input ("Enter year group (1 to 13, 0 to =exit)™)
year = int (strYear)

¥ Keep looping until user wants to stop
while (year != 0):
Vzlidate input as a real year group
if (year < 1):
print ("Year too small™)
elif (year > 13):
print ("Year too big"™)
elif (year < 7):
print ("Primzry'")
elif (year < 12):
print ("Sscondary™)
else:

print ("College")

Get a new input before going to top of loop
str¥ear = input ("Enter vyear group (1 to 13, 0 teo exit)™)
year = int (str¥ear)

46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68

i S5olution 2 ————————

Prime the loop, just in case the first entry is '0°
strY¥ear = input ("Enter year group (1 to 13, 0 to exit)")
year = int (strYear)

¥ Eeep looping until user wants to stop
while (year != 0):
validate input as a real year group
if (year < 1):
print ("Year too small™)
elif (year < 7):
print ("Primzry")
elif (year < 12):
print ("Secondary")
elif (year > 13):
print("vezr too bhig")
else:

print ("College")

Get a new input before going to top of loop
strY¥ear = input("Enter vyear group (1 to 13, 0 to exit)™)
year = int(stryesar)

PMT

Question | Answer Additional guidance Mark
number
5 The following assessment objectives are Considerations: (15)

assessed:

e AO2.1b
e AO03.1

e AO3.2a
e AO3.2b
e AO03.2c

Award marks as shown.

e Import of math library (1)

e Two parameters in first line of subprogram
definition (1) with names ‘pRadius’ and
‘pHeight’, in any order (1)

e Accurate translation of the formula to code
(1)

e Use of math.pi constant in formula
translation (1)

e Two passed-in parameters (‘pRadius’ and
‘pHeight’) used in the calculation (1)

e Assignment of calculation to ‘theVolume’ (1)

e One return statement with ‘theVolume’ in
brackets (1)

e Parameters in call to subprogram are
‘baseRadius’ and ‘coneHeight’, in any order
(1)

e Order of parameters matches order in first
line of subprogram definition (1)

e Capture of returned value in main program,
in ‘coneVolume’ (1)

e Format volume to three decimal places for
outputting only (1)

Levels-based mark scheme to a maximum of 3,
from:

e Functionality (3)

e 6.1.1 Be able to
use
decomposition to
analyse
requirements

e 6.1.2 Be able to
write in a high-
level language

e 6.6.1 Be able to
perform
generalisations

e Default printing
will drop trailing
Os, even if
rounded, so string
formatting should
be used

PMT

Functionality (levels-based mark scheme)

0 1 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the

® program are incorrect or program are complete, providing a program are complete, providing a

5 incomplete, providing a program of functional program that meets functional program that fully meets

® limited functionality that meets most of the stated requirements. the given requirements.

E some of the given requirements. e Program outputs are mostly e Program outputs are accurate,

E e Program outputs are of limited accurate and informative. informative, and suitable for the

° accuracy and/or provide limited e Program responds predictably to user.

3 information. most of the anticipated input. e Program responds predictably to

I e Program responds predictably to « Solution may not be robust within anticipated input.

o~ some of the anticipated input. the constraints of the problem. e Solution is robust within the
e Solution is not robust and may constraints of the problem.

crash on anticipated or provided
input.

PMT

o =] oy 1 s L b =

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37

39
40
41
42
43
44
45
46

===> Import a
import math

library to use Pi

Hard coded for testing

coneHeight = 10.

I
—

baseRadius
coneVolume

I
o
o

7

===> Add parameters inside the brackets
def calcVolume (pRadius, pHeight):

print ("The
print ("The

radius 1s:", pRadius)
height is:", pHeight)

===> Complete the calculation for the wvolume

theVolume =
theVolume
theVolume

print ("The

1/3 * math.pi * math.pow (pRadius, 2) * pHeight
= 1/3 * math.pi * pRadius**2 * pHeight
= 1/3 * math.pi * pRadius * pRadius * pHeight

volume is:", theVolume)

===> Return the volume to the caller
return (theVolume)

===> Call the subprogram, passing parameters,
and catch the returned wvalue in the correct variable
coneVolume = calcVolume (baseRadius, coneHeight)

===> Print the total volume to three decimal places using string.format()

===> by completing the pattern inside the { }
print ("{:.3f}".format (coneVolume))

PMT

Question | Answer Additional guidance Mark
number
6 The following assessment objectives are Considerations: (15)

assessed:

e AO2.1b
e AO03.1

e AO3.2a
e AO3.2b
e AO03.2c

Award marks as shown.

Points-based mark scheme:
Inputs
e Accepts and responds to user input (1)

e Validation with range check using relational
operators >=1000, <=9999 (1)

Process

e Use of library subprograms len() (1) to
work with any number of users in the list

e Use of Boolean (1) to stop loop when found
or passed over

e Use of 2-dimensional indexing (1) in user
list

Outputs

e Display of appropriate messages (1)

Levels-based mark scheme to a maximum of
9, from:

e Solution design (3)
e Good programming practices (3)
e Functionality (3)

e 6.1.1 Use
decomposition and
abstraction to
analyse a problem
(inputs, outputs,
processing,
initialisation,
design)

e 6.6.1 Decompose
into subproblems

e 6.1.2 Write in a
high-level language

e 6.2.2 Use
sequencing and
selection
components

PMT

Solution design (levels-based mark scheme)

0 1 2 3 Max.
There has been little attempt to There has been some attempt to The problem has been decomposed 3
decompose the problem. decompose the problem. clearly into component parts.

- Some of the component parts of Most of the component parts of the The component parts of the

.ftB the problem can be seen in the problem can be seen in the problem can be seen clearly in the

g solution, although this will not be solution. solution.

g complete. Most parts of the logic are clear The logic is clear and appropriate

L) Some parts of the logic are clear and appropriate to the problem. to the problem.

@ and appropriate to the problem. The use of variables and data The choice of variables and data

& The use of variables and data structures is mostly appropriate. structures is appropriate to the

03 strubc.itureg, ?_pp_ropérlate to the The choice of programming problem.

5 problem, is limited. constructs is mostly appropriate to The choice of programming

< The choice of programming the problem. constructs is accurate and
constructs, appropriate to the appropriate to the problem.
problem, is limited.

PMT

Good programming practices (levels-based mark scheme)

1

2

3

Max.

No rewardable material

There has been little attempt to lay
out the code into identifiable
sections to aid readability.

Some use of meaningful variable
names.

Limited or excessive commenting.

Parts of the code are clear, with
limited use of appropriate spacing
and indentation.

There has been some attempt to
lay out the code to aid readability,
although sections may still be
mixed.

Uses mostly meaningful variable
names.

Some use of appropriate
commenting, although may be
excessive.

Code is mostly clear, with some use
of appropriate white space to aid
readability.

Layout of code is effective in
separating sections, e.g. putting all
variables together, putting all
subprograms together as
appropriate.

Meaningful variable names and
subprogram interfaces are used
where appropriate.

Effective commenting is used to
explain logic of code blocks.

Code is clear, with good use of
white space to aid readability.

PMT

Functionality (levels-based mark scheme)

0 1 2 3 Max.
Functionality (when the code Functionality (when the code Functionality (when the code 3
is run) is run) is run)

e The component parts of the e The component parts of the e The component parts of the

® program are incorrect or program are complete, providing a program are complete, providing a

5 incomplete, providing a program of functional program that meets functional program that fully meets

® limited functionality that meets most of the stated requirements. the given requirements.

E some of the given requirements. e Program outputs are mostly e Program outputs are accurate,

E e Program outputs are of limited accurate and informative. informative, and suitable for the

° accuracy and/or provide limited e Program responds predictably to user.

3 information. most of the anticipated input. e Program responds predictably to

I e Program responds predictably to « Solution may not be robust within anticipated input.

o~ some of the anticipated input. the constraints of the problem. e Solution is robust within the
e Solution is not robust and may constraints of the problem.

crash on anticipated or provided
input.

PMT

PMT

M0 =1 & N W

{6 T O I o I o T T o T o T 6 T 6 TR o Y A I % B o S S i i e st e
(==L V= T = = RS B T 5 BOY O % T v T W o T Y Y O Y S R % T = o B U

User Number, Last Name, First Name, Login Name, Passcode
userList = [[110,"Cashin","Bonnie™,"Casel110",7005],
[101,"Cheruit","Madeleine™,"Chel01",1507],
[103,"Chanel", "Coco" ,"Chol0O3",7333],
[107,"Gres" ,"Madame" ,"GrelO7",b,3054],
[114,"Hamnett","Katharine","Hael114",4807],
[118,"Herrera™,"Carolina","Heall8" ,5567],
[111,"Hulanicki","Barbara"™,"Hualll" ,5125],
[l116,"Johnson" ,"Betsey" ,"Joylle" ,8869],
[104,"Lanvin" ,"Jeanne™ ,"La=s104" ,8580],
[109,"McCardell","Claire™,"Mcel08" 59917,
[102,"Paquin","Jeanns" ,"Pasl02",6495],
[112,"Quant", "Mary","Quyll2" K 90287,
[113,"Rykiel","Sonia","Ryall13",1177]1,
[105,"Schiaparelli™,"Elsa™,"Scalls5",2980],
[108,"Schlee","Valentina”,"Scall8",6801],
[106,"Vionnet","Madeleine™,"Vielle" ,3042],
[117,"Von Furstenberg","Diane","Voell7",2553],
[119, "Wang" ,"Vera™,"Wazll9",k 2004],
[115,"Westwood", "Vivienne" ,"Weell5" ,7806]]
inID = "" String
inPass = 0 Integer
found = False Haven't found the record yet

rassed = False Haven't gone past where it should be

H o

index = 0 The current record being looksed at

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59

&0

PMT

Get user login name

inID = input ("Enter your user login name, type X to exit.™)

¥ Get user passcode

inPass = int (input ("Enter your four digit pzasscode™))

Check if passcode is wvalid
if (inPass >= 1000 and inPass <= 5999):
¥ Look through userList to find matching set
while (found == False and passed == False and index < len(userList)):
¥ If both parts match (authenticated), display wslcomse message
if (userList[index][3] == inID and userList[index][4] == inPass):
found = True
print ("Welcome", userList[index][2], userlList[index] [1])
¥ Check if have passed over where it should be in the list
elif (userList[index][3] > inID):
passed = True ¥ Stops looping
else:
index = index + 1 ¥ Look at next entry
¥ If not found or passed, display "Invalid Login Credentials™
if (found == False):
print ("Invalid Login Credentials™)
else:

print ("Passcode must be four digits long™)

