

Question

number

Answer Additional guidance Mark

2 The following assessment objectives are

assessed:

• AO2.1a

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Add ‘:’ at end of the line:

if (choice == 'y'): (1)

• Add missing ‘)’ before ‘:’ in the line:
for num in range(5, -1, -1): (1)

• Add missing “ before end bracket in the line:

print("Goodbye") (1)

• Printing a suitable question for the user based

on context, i.e. “Do you want me to sing?” (1)

• Accept user input of ‘y’ and ‘n’ (1)

• Changing the variable name ‘x’ to a more

meaningful name (1) such as ‘choice’

throughout the code

• Addition of comment indicating reverse

stepping (1)

• One mark each for insertion of white space to

aid readability, up to a maximum of two

marks (2)

• Correct output for ‘y’ (count down 5 to 0 and

then Goodbye) and correct output for ‘n’

(Goodbye) (1)

 (10)

PMT

PMT

Question

number

Answer Additional guidance Mark

3 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Fixing runtime error by coercion of input to

‘int’ (1)

• Fixing errors by using modulus (1)

• Use of at least one appropriate ‘if’ statement

in the solution (1)

• Adding validation for input numbers using:

o relational operator (<=20) (1)

o relational operator (>=1) (1)

o correct Boolean operator (and/or) (1)

• Corrects output message for even numbers

and odd numbers (1)

Levels-based mark scheme to a maximum of 6,

from:

• Solution design (3)

• Functionality (3)

• Fixing error with

odd numbers can

be done in several

different ways (see

examples)

• Award any

accurate tests for

validation range

Considerations:

• 6.1.6 Using test

data to evaluate a

program, such as

extreme data [a

character], normal

data [1...20] and

boundary data [0,

21]

• 6.2.2 Appropriate

use of sequencing,

selection and

repetition

• 6.1.1 Use analysis

to solve problems

• 6.1.6 Use logical

reasoning to

evaluate efficiency

(i.e. reduce tests)

(13)

PMT

Solution design (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to

decompose the problem.

• Some of the component parts of

the problem can be seen in the

solution, although this will not be

complete.

• Some parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures, appropriate to the

problem, is limited.

• The choice of programming

constructs, appropriate to the

problem, is limited.

• There has been some attempt to

decompose the problem.

• Most of the component parts of the

problem can be seen in the

solution.

• Most parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures is mostly appropriate.

• The choice of programming

constructs is mostly appropriate to

the problem.

• The problem has been decomposed

clearly into component parts.

• The component parts of the

problem can be seen clearly in the

solution.

• The logic is clear and appropriate

to the problem.

• The choice of variables and data

structures is appropriate to the

problem.

• The choice of programming

constructs is accurate and

appropriate to the problem.

3

PMT

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

PMT

PMT

PMT

Question

number

Answer Additional guidance Mark

4 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Use of comments, white space and layout to

aid readability (1)

• Initial input done outside loop, to handle first

entry is ‘0’ (1)

• Repetition (while) used as outermost loop (1)

• ‘elif (year > 13)’ is placed later in the logic

than ‘if (year < 1)’ (1)

• ‘elif (year < 12)’ is placed later in the logic

than ‘elif (year < 7)’ (1)

• Accepting next round of input done inside loop

(1)

• Validation messages match validation tests:

o Year too small (1)

o Year too big (1)

• Institution messages match tests:

o Primary (1)

o Secondary (1)

o College (1)

• Correct outputs for each set of test data:

o 0 = exiting (1)

o 1 and 6 = Primary (1)

o 7 and 11 = Secondary (1)

o 12 = College (1)

 (15)

PMT

PMT

PMT

Question

number

Answer Additional guidance Mark

5 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

• Import of math library (1)

• Two parameters in first line of subprogram

definition (1) with names ‘pRadius’ and

‘pHeight’, in any order (1)

• Accurate translation of the formula to code

(1)

• Use of math.pi constant in formula

translation (1)

• Two passed-in parameters (‘pRadius’ and

‘pHeight’) used in the calculation (1)

• Assignment of calculation to ‘theVolume’ (1)

• One return statement with ‘theVolume’ in

brackets (1)

• Parameters in call to subprogram are

‘baseRadius’ and ‘coneHeight’, in any order

(1)

• Order of parameters matches order in first

line of subprogram definition (1)

• Capture of returned value in main program,

in ‘coneVolume’ (1)

• Format volume to three decimal places for

outputting only (1)

Levels-based mark scheme to a maximum of 3,

from:

• Functionality (3)

Considerations:

• 6.1.1 Be able to

use

decomposition to

analyse

requirements

• 6.1.2 Be able to

write in a high-

level language

• 6.6.1 Be able to

perform

generalisations

• Default printing

will drop trailing

0s, even if

rounded, so string

formatting should

be used

(15)

PMT

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

PMT

PMT

Question

number

Answer Additional guidance Mark

6 The following assessment objectives are

assessed:

• AO2.1b

• AO3.1

• AO3.2a

• AO3.2b

• AO3.2c

Award marks as shown.

Points-based mark scheme:

Inputs

• Accepts and responds to user input (1)

• Validation with range check using relational

operators >=1000, <=9999 (1)

Process

• Use of library subprograms len() (1) to

work with any number of users in the list

• Use of Boolean (1) to stop loop when found

or passed over

• Use of 2-dimensional indexing (1) in user

list

Outputs

• Display of appropriate messages (1)

Levels-based mark scheme to a maximum of

9, from:

• Solution design (3)

• Good programming practices (3)

• Functionality (3)

Considerations:

• 6.1.1 Use

decomposition and

abstraction to

analyse a problem

(inputs, outputs,

processing,

initialisation,

design)

• 6.6.1 Decompose

into subproblems

• 6.1.2 Write in a

high-level language

• 6.2.2 Use

sequencing and

selection

components

(15)

PMT

Solution design (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to

decompose the problem.

• Some of the component parts of

the problem can be seen in the

solution, although this will not be

complete.

• Some parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures, appropriate to the

problem, is limited.

• The choice of programming

constructs, appropriate to the

problem, is limited.

• There has been some attempt to

decompose the problem.

• Most of the component parts of the

problem can be seen in the

solution.

• Most parts of the logic are clear

and appropriate to the problem.

• The use of variables and data

structures is mostly appropriate.

• The choice of programming

constructs is mostly appropriate to

the problem.

• The problem has been decomposed

clearly into component parts.

• The component parts of the

problem can be seen clearly in the

solution.

• The logic is clear and appropriate

to the problem.

• The choice of variables and data

structures is appropriate to the

problem.

• The choice of programming

constructs is accurate and

appropriate to the problem.

3

PMT

Good programming practices (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

• There has been little attempt to lay

out the code into identifiable

sections to aid readability.

• Some use of meaningful variable

names.

• Limited or excessive commenting.

• Parts of the code are clear, with

limited use of appropriate spacing

and indentation.

• There has been some attempt to

lay out the code to aid readability,

although sections may still be

mixed.

• Uses mostly meaningful variable

names.

• Some use of appropriate

commenting, although may be

excessive.

• Code is mostly clear, with some use

of appropriate white space to aid

readability.

• Layout of code is effective in

separating sections, e.g. putting all

variables together, putting all

subprograms together as

appropriate.

• Meaningful variable names and

subprogram interfaces are used

where appropriate.

• Effective commenting is used to

explain logic of code blocks.

• Code is clear, with good use of

white space to aid readability.

3

PMT

Functionality (levels-based mark scheme)

0 1 2 3 Max.
N

o
 r

e
w

a
rd

a
b
le

 m
a
te

ri
a
l

Functionality (when the code

is run)

• The component parts of the

program are incorrect or

incomplete, providing a program of

limited functionality that meets

some of the given requirements.

• Program outputs are of limited

accuracy and/or provide limited

information.

• Program responds predictably to

some of the anticipated input.

• Solution is not robust and may

crash on anticipated or provided

input.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that meets

most of the stated requirements.

• Program outputs are mostly

accurate and informative.

• Program responds predictably to

most of the anticipated input.

• Solution may not be robust within

the constraints of the problem.

Functionality (when the code

is run)

• The component parts of the

program are complete, providing a

functional program that fully meets

the given requirements.

• Program outputs are accurate,

informative, and suitable for the

user.

• Program responds predictably to

anticipated input.

• Solution is robust within the

constraints of the problem.

3

PMT

PMT

PMT

