| Please check the examination details below before entering your candidate information | | | | |---|------|--------------------|------------------| | Candidate surname | | | Other names | | | | | | | Pearson Edexcel
Level 1/Level 2 GCSE (9–1) | Cent | re Number | Candidate Number | | Time 1 hour 10 minutes | | Paper
reference | 1SC0/2CH | | Combined Scient PAPER 5 Higher Tier | nce | 2 | | | You must have:
Calculator, ruler | | | Total Marks | ### **Instructions** - Use **black** ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. - Calculators may be used. - Any diagrams may NOT be accurately drawn, unless otherwise indicated. - You must show all your working out with your answer clearly identified at the end of your solution. ### Information - The total mark for this paper is 60. - The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question. - In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate. - There is a periodic table on the back cover of the paper. ### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - Good luck with your examination. Turn over ▶ ## Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . 1 (a) The concentration of a solution can be calculated using the equation concentration of solution = $$\frac{\text{mass of solid}}{\text{volume of solution}}$$ A student dissolved 9.25 g of ammonium chloride in water and made up the solution to a volume of 200 cm³. Use the equation to calculate the concentration of this solution in g dm⁻³. (2) concentration = $g dm^{-3}$ (b) Dissolving ammonium chloride in water is an endothermic process. Figure 1 shows part of the reaction profile for this process. heat energy ammonium chloride solution ammonium chloride + water progress of reaction ### Figure 1 (i) Explain how Figure 1 shows that dissolving ammonium chloride in water is an endothermic process. (2) (ii) Complete the reaction profile in Figure 1 and label the activation energy. (2) (c) A student used the equipment in Figure 2 to investigate whether electricity can pass through solid ammonium chloride and through ammonium chloride solution. Figure 2 If an electrical current flows in the circuit, the lamp will light up. Figure 3 shows the results of the investigation. | substance | lamp | |----------------------------|------------------| | solid ammonium chloride | did not light up | | ammonium chloride solution | lit up brightly | Figure 3 (3) | (Total for Question 1 = 9 marks) | |----------------------------------| | | | | | | |
 | |
 | | | | | | | | | (3) | 2 | Diesel oil is a mixture of hydrocarbons that can be obtained from crude oil. (a) State the name of the process used to separate diesel oil from crude oil. (1) | | | | | | |---|--|-------|-------|---|-----|--| | | | | | contains alkanes.
anes are part of an homologous series. | | | | | | Which | า sta | tement about compounds in this homologous series is true? | (4) | | | | | × | A | they have the same chemical formula | (1) | | | | | × | В | they have the same empirical formula | | | | | | × | C | they have the same general formula | | | | | | × | D | they have the same molecular formula | | | | | | | | ls such as diesel oil are burned, the high temperatures produced can ogen and oxygen in the air to form the pollutant nitrogen dioxide. | | | | | | Comp | lete | the balanced equation for the reaction. | (2) | | | | | | | N | | | (d) Explain how the greenhouse effect is caused by the gases produced by the complete combustion of diesel oil. (Total for Question 2 = 7 marks) | 3 | This qu | uestio | n is about po | otassium and zinc. | | |---|---------|------------|---------------|--|-----| | | (a) Wh | nich of | the followir | ng temperatures is most likely to be the melting point of pota | | | | 5 | ▽ • | 62.06 | | (1) | | | L | | _63°C | | | | | _ | ⊠ B
_ | | | | | | | ⊠ C | 63°C | | | | | | X D | 630°C | | | | | | | | tronic configuration of an atom of potassium is related to its | | | | ро | sition | in the period | dic table. | (2) | | | | | | | (-/ | (c) Po | tassiu | m reacts witl | h oxygen to form potassium oxide. | | | | | | | to show that a gas is oxygen. | | | | () | | | | (2) | (ii) | Pota | ssium oxide | is ionic. | | | | | Write | the electro | nic configurations for the ions in potassium oxide, K_2O . | | | | | | | | (2) | | | | | | potassium ion: | | | | | | | oxide ion: | | | | | | | | | | | | | | | | (d) Figure 4 shows two gas syringes connected by a glass tube. using the apparatus shown in Figure 4. Inside the glass tube there are some pieces of zinc. Zinc reacts with oxygen at a temperature of over 225 °C. Not all the oxygen reacts at once, the oxygen reacts only when in contact with the zinc. Figure 4 Devise a plan to find the volume of oxygen contained in a known volume of air, | (4) | |-----| | | | | | | | | | | | | | | (Total for Question 3 = 11 marks) **4** This question is about the rate of reaction between calcium carbonate and dilute hydrochloric acid. The word equation for this reaction is calcium carbonate + hydrochloric acid → calcium chloride + water + carbon dioxide (a) Which of the following is the formula for calcium carbonate? (1) - A CaCO, - B CaCO₃ - C Ca(CO), - \square **D** Ca(CO₃)₂ - (b) Some pieces of calcium carbonate were added to dilute hydrochloric acid in a conical flask and the volume of carbon dioxide produced was measured. Complete the diagram in Figure 5 to show the apparatus to collect the gas produced and measure its volume. (2) Figure 5 - (c) The reaction between calcium carbonate and dilute hydrochloric acid was investigated at different temperatures. - (i) State what could be used to keep the temperature of the conical flask and its contents at a temperature of 45 °C throughout the reaction. (1) (ii) Figure 6 shows a graph of volume of gas collected in this investigation. volume of gas in cm³ Figure 6 Draw a tangent at 100 seconds on Figure 6. Use this tangent to calculate the rate of reaction at this time. (2) rate of reaction = cm³ s⁻¹ | (iii) The temperature of the acid was kept at 45 °C. State one other variable that needs to be controlled during this investigation. | (1) | |--|-------| | (iv) Explain, in terms of particles, how decreasing the temperature affects the rate of this reaction. | (3) | | | | | (Total for Question 4 = 10 ma | nrks) | - 5 This question is about some of the elements in group 7 of the periodic table. - (a) Which row in the table correctly shows the colours and physical states of the elements at room temperature? (1) | × | Α | iodine: purple gas | bromine: yellow liquid | |---|--|-------------------------|---------------------------| | × | B chlorine: pale green gas | | iodine: brown solid | | × | c bromine: red-brown liquid chlorine: yellow liquid | | chlorine: yellow liquid | | × | D | iodine: dark grey solid | bromine: red-brown liquid | (b) The compound phosphorus oxychloride has the formula POCl₃. Calculate the percentage by mass of chlorine in phosphorus oxychloride. (relative atomic masses: O = 16.0, P = 31.0, Cl = 35.5) (2) percentage by mass of chlorine = (c) When iron reacts with chlorine, iron chloride is formed. Two possible equations for this reaction are **A** Fe + $$Cl_2 \rightarrow FeCl_2$$ $$\mathbf{B} \qquad \text{2Fe} \, + \, \text{3Cl}_{\text{2}} \, \rightarrow \, \text{2FeCl}_{\text{3}}$$ In an experiment, 8.40 g iron reacts with chlorine to form 19.05 g iron chloride. Show, using a calculation, which reaction, **A** or **B**, is taking place. You must show your working. (relative atomic masses: Cl = 35.5, Fe = 56.0) (3) *(d) Group 1 metals react with the elements from group 7 to form salts. Some examples of these reactions are shown in Figure 7. | reaction word equation | | |--|--| | \mathbf{W} lithium + chlorine \rightarrow lithium chloride | | | X | potassium + fluorine $ ightarrow$ potassium fluoride | | Y rubidium + iodine → rubidium iodide | | | Z potassium + bromine → potassium bromide | | Figure 7 You will find the position of these elements in their groups on the periodic table. Explain, in terms of their electronic configurations and the relative reactivity of these elements, which of the reactions shown in Figure 7 would be the most violent. | (6) | |-----| - **6** Pentadecane, C₁₅H₃₂, is a hydrocarbon and is used as a fuel. - (a) The incomplete combustion of pentadecane produces carbon monoxide. Carbon monoxide is a toxic gas. - (i) Explain why the incomplete combustion of pentadecane can produce carbon monoxide as one of the products. (2) (ii) Explain how carbon monoxide behaves as a toxic gas. (2) (b) 1 mole of pentadecane can be cracked to form 1 mole of octane, C₈H₁₈, and 1 mole of propene, C₃H₆, and 2 moles of another product. Complete the balanced equation for this reaction by adding the formula of the missing product. (1) $C_{15}H_{32} \rightarrow C_8H_{18} + C_3H_6 + 2$ (c) Figure 8 shows the reaction of propene, C_3H_6 , with water. Figure 8 Figure 9 shows some bond energies. | bond | bond energy in kJ mol ⁻¹ | |------|-------------------------------------| | С—С | 347 | | C—O | 358 | | С—Н | 413 | | 0—Н | 464 | | C=C | 612 | Figure 9 Use the bond energies in Figure 9 to calculate the energy change of the reaction in Figure 8. |
 |
 |
 | | |------|------|------|--| |
 |
 |
 | | | | | | | | | | | | | | | | | | |
 |
 | | |
 |
 |
 | | | | | | | |
 |
 |
 | | energy change of reaction = $kJ \, mol^{-1}$ (4) (2) (d) Methane gas, CH_4 , was burned using the apparatus shown in Figure 10. Figure 10 | Explain why water droplets form | on the bottom of the beaker of cold water. | |---------------------------------|--| |---------------------------------|--| (Total for Question 6 = 11 marks) **TOTAL FOR PAPER = 60 MARKS** # The periodic table of the elements | 0
4
He
helium
2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | |------------------------------------|--|------------------------------------|------------------------------------|-------------------------------------|--------------------------------------| | 7 | 19
F
fluorine
9 | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | | 9 | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | | 5 | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | | 4 | 12
C
carbon
6 | 28
Si
silicon
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207
Pb
lead
82 | | က | 11
B
boron
5 | 27
Al
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
T
thallium
81 | | · | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192
Ir
iridium
77 | | 1
H
hydrogen | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | | | relative atomic mass atomic symbol name atomic (proton) number | | 52
Cr | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | | Key | | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | | | | | 48
Ti
tttanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | | · | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La*
Ianthanum
57 | | 2 | 9
Be
beryllium
4 | 24 Mg magnesium | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | | - | 7
Li
Iithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | ^{*} The elements with atomic numbers from 58 to 71 are omitted from this part of the periodic table. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.