Please check the examination details	below before ente	ering your candidate information
Candidate surname		Other names
Pearson Edexcel Level 1/Level 2 GCSE (9–1)	Centre Number	Candidate Number
Monday 1 Jun	e 2020	0
Afternoon (Time: 1 hour 10 minute:	s) Paper Ro	eference 1SC0/2BH
Combined Scien	ce	
•		Higher Tier
You must have: Calculator, ruler		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- Any diagrams may NOT be accurately drawn, unless otherwise indicated.
- You must show all your working out with your answer clearly identified at the end of your solution.

Information

- The total mark for this paper is 60.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- In questions marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions. Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 Figure 1 shows the leaves and flowers of water lily plants (*Nymphaea odorata*) on a lake.

© Oleksandr Shymanskyi/123RF

Figure 1

(a) Water lilies have stomata on the up	pper surface of the leaves.	
Explain why water lilies have no sto	omata on the lower surface of the leaves.	(2)

(b) (i) The white petals of the water lily flowers cannot photosynthesise. Which structure in leaf cells is the site of photosynthesis? A nucleus B vacuole C mitochondrion D chloroplast (ii) Glucose is made by photosynthesis. Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily.		_	e white petals of the water lily flowers cannot photosynthesise.	
A nucleus B vacuole C mitochondrion D chloroplast (ii) Glucose is made by photosynthesis. Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily.	b) (i)	Th	- · · · · · · · · · · · · · · · · · · ·	
 A nucleus B vacuole C mitochondrion D chloroplast (ii) Glucose is made by photosynthesis. Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2) 		Wł	nich structure in leaf cells is the site of photosynthesis?	(1)
 C mitochondrion D chloroplast (ii) Glucose is made by photosynthesis. Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. 	×	A	nucleus	(-)
 ☑ D chloroplast (ii) Glucose is made by photosynthesis. Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? ☑ A glycerol ☑ B ribose ☑ C sucrose ☑ D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2) 	×	В	vacuole	
 (ii) Glucose is made by photosynthesis. Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2) 	×	C	mitochondrion	
Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2)	×	D	chloroplast	
Glucose is converted to another sugar to be transported in the plant. What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2)				
What is the name of this sugar? A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2)	(ii)	Glu	ucose is made by photosynthesis.	
A glycerol B ribose C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily.		Glu	ucose is converted to another sugar to be transported in the plant.	
 ■ A glycerol ■ B ribose ■ C sucrose ■ D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. 		Wł	nat is the name of this sugar?	(1)
 C sucrose D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. 	×	A	glycerol	(1)
D starch (iii) Describe how this sugar is transported from the leaves to the flowers of the water lily.	×	В	ribose	
(iii) Describe how this sugar is transported from the leaves to the flowers of the water lily. (2)		_	SIICYOSA	
water lily. (2)	X		3ucrose	
	\boxtimes	D	starch	
	\boxtimes	D De	starch escribe how this sugar is transported from the leaves to the flowers of the	(2)
	\boxtimes	D De	starch escribe how this sugar is transported from the leaves to the flowers of the	(2)
	\boxtimes	D De	starch escribe how this sugar is transported from the leaves to the flowers of the	(2)
	\boxtimes	D De	starch escribe how this sugar is transported from the leaves to the flowers of the	(2)
	(iii)	D De waa	starch escribe how this sugar is transported from the leaves to the flowers of the ater lily.	
	(iii)	D De waa	starch escribe how this sugar is transported from the leaves to the flowers of the ater lily.	
	(iii)	D De waa	starch escribe how this sugar is transported from the leaves to the flowers of the ater lily.	
	(iii)	D De waa	starch escribe how this sugar is transported from the leaves to the flowers of the ater lily.	
	(iii)	D De waa	starch escribe how this sugar is transported from the leaves to the flowers of the ater lily.	
	(iii)	D De waa	starch escribe how this sugar is transported from the leaves to the flowers of the ater lily.	

(c) Figure 2 shows water lilies growing in a lake in Europe.

© lynn gladwell/123RF

Figure 2

One water lily plant was brought from America 10 years ago and planted in the lake shown in Figure 2.

	(Total for Question 1 = 9 ma	
Explain why this non margenous plane now cov	ers the whole surface of the lake.	(3)
Explain why this non-indigenous plant now cov	ers the whole surface of the lake.	

2 A slide of potato cells was viewed using a light microscope.

Figure 3 is a drawing of the slide showing starch grains in the potato cells.

Figure 3

(a) (i) Calculate the mean number of starch grains in potato cells P, Q and R.

(1)

 ctarch	arain
 Startii	grains

(ii) Which structures are found in plant cells but are **not** found in animal cells?

(1)

- A cell membrane, nucleus, chloroplast
- **B** cell wall, cell membrane, cytoplasm
- C nucleus, large vacuole, chloroplast
- ☑ D cell wall, chloroplast, large vacuole

(b) A scientist investigated how the length of starch grains in potatoes changed when the potatoes were stored in the dark.

Figure 4 shows a potato after being stored in the dark.

© rodimov/Shutterstock

Figure 4

Three potatoes were used in the investigation.

The length of starch grains in potato 1 were measured at the start.

The length of starch grains in potato 2 were measured after 5 weeks in the dark.

The length of starch grains in potato 3 were measured after 10 weeks in the dark.

Figure 5 shows the results.

potato	time after placing in the dark in weeks	mean length of starch grains in μm
1	0	64
2	5	50
3	10	30

Figure 5

(i) Calculate the percentage difference in the mean length of starch grains in potato 2 at 5 weeks and in potato 3 at 10 weeks.

-	1 a	9.1
- (L	2

		0/0

(ii) State two variables the scientist should have controlled to improve this invest	igation. (2)
1	
2	
(iii) The starch grains in the potatoes became smaller as the starch was converted into glucose.	
State why the potatoes need glucose.	(1)
	(1)
(iv) Describe how starch is broken down into glucose.	
	(2)
(Total for Question 2 = 9 ma	arks)

BLANK PAGE

Trypsin is a protease enzyme used in the manufacture of food for babies.	
(a) (i) Which food group is digested by trypsin?	
	(1)
■ A carbohydrates	
■ B lipids	
D proteins	
(ii) The food is mashed before the trypsin is added.	
Explain the advantage of mashing the food before adding the trypsin.	
	(2)
(b) A manufacturer of baby food wanted to find out the optimum pH for trypsin.	
(b) A manufacturer of baby food wanted to find out the optimum pH for trypsin. Equal volumes of different pH solutions were placed in six separate test tubes.	
Equal volumes of different pH solutions were placed in six separate test tubes.	
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm ³ of 1% trypsin solution was added to each test tube.	
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube.	
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded.	(1)
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded.	(1)
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded.	(1)
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded. (i) State one other variable that should be controlled in this investigation.	(1)
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded.	
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded. (i) State one other variable that should be controlled in this investigation.	(1)
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded. (i) State one other variable that should be controlled in this investigation.	
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded. (i) State one other variable that should be controlled in this investigation.	
Equal volumes of different pH solutions were placed in six separate test tubes. 5 cm³ of 1% trypsin solution was added to each test tube. 1.5 g of mashed food was placed in each test tube. The time taken to digest the food was recorded. (i) State one other variable that should be controlled in this investigation.	

(c) The results are shown in Figure 6.

рН	time taken to digest the food in minutes
1	42
2	15
3	9
4	2
5	16
6	40

Figure 6

(i) Describe the trends shown in this data. (2)

- - (ii) At pH 4, the trypsin digested 1.5 g of mashed food at a rate of 0.8 g per minute. Calculate the rate of digestion at pH 1.
 - Give your answer to one significant figure.

g per minute

(2)

(iii) Explain the difference in the rate of reaction at pH 1 and the rate of reaction a	nt pH 4.
	(2)
(Total for Question 3 = 11 m	arks)

4 (a) Figure 7 shows the time taken for blood to clot at different temperatures.

temperature in °C	time taken for blood to clot in seconds
5	90
15	70
25	55
35	40
45	110

Figure 7

(i) Draw a graph to show the data in Figure 7.

(3)

temperature in °C

12

time taken for blood to clot in seconds

(ii) Give two safety precautions that should be used when handling blood sam	nples.
	(2)
1	
2	
(b) (i) Which part of the blood causes blood to start clotting?	(4)
■ A erythrocytes	(1)
■ B lymphocytes	
□ C platelets	
D antibodies	
antibodies	
(ii) Give one advantage of a blood clot forming.	(1)
(c) Explain how one structure of a vein helps the blood return to the heart.	(2)
(Total for Question 4 = 9	marks)

5 Figure 8 shows the heart rate of person A and person B.

Person A does not do any regular exercise.

Person B has been running regularly for one year.

Figure 8

(a) Both people rested for the first 6 minutes, then did the same high intensity exercise for the next 12 minutes, then rested.

Compare :	tha	haart	rator	of no	rcan 1	۱ ، ، <i>، i</i> + h	+ha	haart	rator	af ۲	aarcan	D
OHIDAIE	1110	neari	14165			1	1110	neari	1416		JE18011	\mathbf{n}

(4)

	(Total for Question 5 = 10 m	arks)
	for person B during exercise.	(3)
	Explain why the heart rate for person A needed to be higher than the heart rate	
c)	The cardiac output for person A during exercise was 5.5 litres per minute.	
	litr	es per mi
		(3)
	Give your answer in litres per minute.	
	Calculate the cardiac output for person B before exercising.	

6 (a) Hyperthyroidism is caused by an overactive thyroid gland.

Figure 9 shows a person with a normal thyroid gland and a person with hyperthyroidism.

normal

hyperthyroidism

© medistock/Shutterstock

Figure 9

(i) State **one** effect of hyperthyroidism on the thyroid gland.

(1)

(ii) The thyroid gland is part of the

(1)

- A circulatory system
- B digestive system
- C endocrine system
- **D** urinary system

(b) Explain how negative feedback, involving the thyroid gland, controls metabolic r	ate. (4)

*(c) Explain how hormones control the menstrual of	cycle. (6)
	(Total for Question 6 = 12 marks)
	TOTAL FOR PAPER = 60 MARKS

BLANK PAGE

BLANK PAGE

