Questions

Q1.

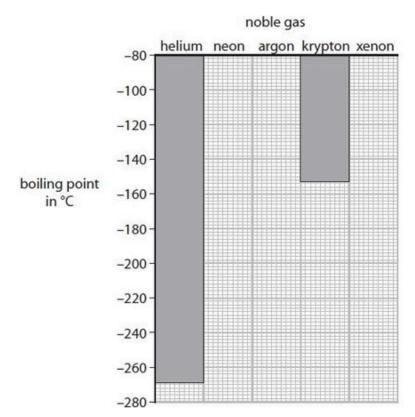

This question is about the noble gases.

Figure 6 shows the boiling points of some of the noble gases.

noble gas	boiling point in °C
helium	-269
neon	-246
argon	-186
krypton	-153
xenon	

Figure 6

(i) Complete the bar chart to show the boiling points of neon and argon.

(ii) Predict the boiling point of xenon.

(Total for question = 3 marks)

(2)

Q2.

For many years, argon was used to fill filament light bulbs.

A filament light bulb is shown in Figure 4.

Figure 4

When the bulb is in use the metal filament becomes extremely hot.

Explain why argon, rather than air, was used to fill filament light bulbs.	
	(2)

(Total for question = 2 marks)

Q3.

This question is about gases.

Figure 15

(i) Explain, using Figure 15, why helium is inert.	
	2)
(ii) Helium is used to fill balloons.	
State one property of helium, apart from it being inert, that makes it suitable for filling balloons.	
	L)
(Total for question = 3 marks)	

Edexcel Chemistry GCSE - Group 0

Q4.

Four of the noble gases are argon, helium, krypton and neon.

Give these gases in order of increasing density.

(2)

(Total for question = 2 marks)

Q5.

This question is about the noble gases.

(i) State, in terms of outer shell electrons, why the noble gases are unreactive.

(ii) Figure 4 shows an airship, filled with helium, floating above the ground.

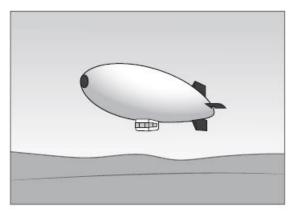


Figure 4

Helium, hydrogen and krypton are gases. Figure 5 shows the reactivity and density, at room temperature and pressure, of helium, hydrogen and krypton.

gas	reactivity	density in g cm ⁻³
helium	unreactive	0.00018
hydrogen	very reactive	0.00009
krypton	unreactive	0.00380

Figure 5

Helium is used in airships. Explain why hydrogen and why krypton are not used in airships.	
	(3)

(Total for question = 4 marks)

Q6.

The densities of some elements in group 0 are shown in Figure 3.

name	density in g cm ⁻³	
helium	0.15	
neon	1.2	
argon	1.4	
krypton		
xenon	3.5	

Figure 3

Use the information in Figure 3 to suggest the density of krypton.

Q7.

The density of a gas can be found using the equation

$$density = \frac{mass}{volume}$$

A student carried out an experiment to find the density of argon.

The mass of a stopper and flask, containing no gas, was known. The flask was completely filled with argon and its mass measured.

Figure 4 shows the results the student wrote down.

mass of stopper and flask in g	78.639
mass of stopper and flask full of argon in g	79.120
volume of flask in cm³	250.0

Figure 4

(i) Use the results to calculate the density	y of argon in g cm–3.
	(2)
density of a	argon = g cm–3

(ii) The flask used for the experiment is shown in Figure 5. The flask holds 250.0 cm3 when filled up to the line.

Figure 5

There is an error in the volume the student has used in the calculation. This would give an incorrect value for the density of argon. Identify this error and state what should be done to correct it.

orror	(2)
error	
what should be done to correct it	
	(Total for question = 4 marks)

Mark Scheme

Q1.

Question number	Answer	Additional guidance	Mark
(i)	neon bar correct (1)		(2)
	argon bar correct (1)	if no other mark scored, allow 1 for neon -252 and argon -192	AO2
Question number	Answer		Mark
(ii)	allow any value from -152 to	-90	(1)
			A01

Q2.

Question number	Answer	Additional guidance	Mark
	An explanation linking the points in one of the pairs EITHER argon is {inert / a noble gas} OR argon has /atoms have) {full / 8 electrons in} outer shell (1) so (it) does not react (with metal filament) OR (argon/atoms) do not {gain / lose / share electrons}	so metal does not burn/ combust (in argon) so (argon) does not {burn / combust} with metal (filament) so (argon) {is unreactive / less reactive / not very reactive / inactive } (with metal filament)	(2)
	OR	Contract that I would be a served to the contract of the contr	
	oxygen is reactive (1)	ignore air for MP1 here	
	(air/oxygen) reacts with metal filament / forms metal oxide (1)	allow metal burns	

Q3.

Question number	Ai	nswer	Additional guidance	Mark
(i)	Ar	n explanation linking: it has two electrons in outer shell/ it has a full outer shell / OWTTE (1)	MP1 – reject if number of electrons in outer shell is stated and not 2 ignore references to protons and neutrons allow helium has two electrons in its (only) shell/helium's (only) shell is full	(2) AO1 1
	•	so does not {gain/ lose/ transfer/ share} electrons (1)	ignore helium does not need to react	

Question number	Answer	Additional guidance	Mark
(ii)	less dense than air	allow less dense than nitrogen allow low density / not (very) dense allow diffuses slowly out of balloon	(1) AO2 1
		ignore less dense than oxygen ignore it is a gas / light / lightweight / inert/ unreactive/ non-flammable / lighter than air / makes balloon float / it rises/ it floats ignore non-toxic / not poisonous	

Q4.

Question number	Answer	Additional guidance	Mark
	1	krypton, argon, neon, helium (1) if order correct except that two adjacent elements transposed allow 1 allow formulae	(2)

Q5.

Answer	Mark
(outer shell is) full/ complete	(1)
	A01

Question number	Answer	Additional guidance	Mark
(ii)	An explanation linking		(3)
	hydrogen is flammable / could ignite (1)		AO3
	krypton is more dense than air (1)	allow krypton has a high density	
	(so krypton) air ship would not float (1)		

Q6.

Question number	Answer	Additional guidance	Mark
	accept any number in the range 1.4 – 3.5 accept value either on answer or in the space in the table	Allow any number of decimal places Do not allow number below 1.4 Do not allow negative numbers Do not allow numbers greater than 3.5	(1)

Q7.

Question number	Answer	Additional guidance	Mark
(i)	mass argon = 79.120 - 78.639 (= 0.481 (g)) (1)		(2)
	density = $0.481/250 = 0.001924 \text{ (gcm}^{-3}\text{)}$ (1)	allow ECF allow 0.002,	
		0.0019, 0.00192, 0.001924 for (2)	

Question Answer number		Additional guidance	e Mark
(ii)	An explanation including the volume of the flask is more than 250 cm ³ / more argon is in the flask than up to the line (1)		(2)
	measure the whole volume of the flask (e.g. fill with water and measure volume of water) (1)	allow use a flask/ container of known volume	