Questions Q1. Titanium and iron are examples of transition metals. Figure 6 shows the percentage abundance of each isotope in a sample of titanium. Figure 6 Calculate the relative atomic mass of titanium in this sample. | | (3) | |------------------------|--------------------------------| relative atomic mass = | | | | (Total for question = 3 marks) | | Q2. | | |--|-----| | The atomic number of magnesium is 12. | | | Magnesium exists as three isotopes: magnesium-24, magnesium-25 and magnesium-26
Describe, by referring to the numbers of subatomic particles, the differences between or
atom of each of these isotopes. | | | | (2) | | | • | | | | | | | | | | | (Total for question = 2 mark | (S) | Q3. In Figure 8, the letters A, E, G, J, X and Z show the positions of six elements in the periodic table. These letters are not the symbols of the atoms of these elements. | 1 | 2 | | Г | | | | | 3 | 4 | 5 | 6 | 7 | 0 | |---|---|--|---|---|---|--|---|---|---|---|---|---|---| | Α | | | L | | | | | E | | | G | | | | J | | | | | | | Ī | | | | | | х | | | | | | 7 | 4 | Figure 8 Element E has an atomic number of 5. In a sample of E there are two isotopes. One isotope has a mass number of 10 and the other isotope has a mass number of 11. | (i) | Expla | in, in terms of subatomic particles, what is meant by the term isotopes. | | |------|--------|--|-----| | | | | (2) | | | ••••• | | • | | | | | | | | | | | | | | | | | (ii) | All at | toms of element E in this sample contain | | | | | | (1) | | | Α | 5 protons | | | 3 | В | 5 neutrons | | | Š | C | 6 protons | | | | D | 6 neutrons | | (Total for question = 3 marks) Q4. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Calcium has an atomic number of 20. A calcium atom has a mass number of 40. (i) Which row of the table shows the number of protons and number of neutrons in this atom of calcium? | | | number of protons | number of neutrons | |---|---|-------------------|--------------------| | × | Α | 20 | 20 | | × | В | 40 | 20 | | × | C | 20 | 60 | | 1 | D | 60 | 20 | (ii) Figure 8 shows the arrangement of electrons in an atom of calcium. Figure 8 Explain, using the information in Figure 8, in which period of the periodic table calcium can be found. | (2) | |-----| | | | | | | | | | | | | (Total for question = 3 marks) (1) Q5. Chlorine has an atomic number of 17. The nucleus of an atom is made up of protons and neutrons. Atoms of chlorine contain 17 protons. Figure 4 shows some information about a proton, a neutron and an electron. | | relative mass | relative charge | |----------|---------------|-----------------| | proton | 1 | +1 | | neutron | 1 | 0 | | electron | very small | -1 | Figure 4 | (i) Explain, using the information in Figure 3 and Figure 4, why atoms of chlorine have no
overall charge. | į | |---|-----| | | (2) | | | | | | | | (ii) Atomo of oblaving 27 hours a mass number of 27 | | | (ii) Atoms of chlorine-37 have a mass number of 37. | | | Calculate the number of neutrons in atoms of chlorine-37. | (1) | | number of neutrons = | | | (iii) There are two isotopes of chlorine, chlorine-35 and chlorine-37. | | | Explain the meaning of the term isotopes. | | | | (2) | | | | | | | | | | | | | | | | (Total for question = 5 marks) The scientist John Dalton lived over 200 years ago. John Dalton suggested an early model of atoms. When Dalton first described atoms he said that - all elements are made of atoms - atoms are not formed of any smaller particles - all atoms of the same element are identical. Give two differences between Dalton's model of atoms and today's model of atoms. | | (2) | |---|-----| | 1 | | | | | | | | | | | | | | | | | | 2 | | | | | | | • | | | | | | • | | | | | | | | | | (Total for question = 2 marks) Q7. Atoms contain electrons, neutrons and protons. (i) Draw one line to link each particle to its correct relative charge. (ii) Which of the following is the relative mass of a proton? - A 0 - \square B $\frac{1}{1837}$ - □ D -1 (Total for question = 3 marks) (1) Q8. | A sample of silicon contains isotopes. | | |---|------| | (i) State, in terms of subatomic particles, how atoms of these isotopes are the same. | | | | (1) | | | | | | | | (ii) This sample of silicon contains three isotopes. | | | 92% of the atoms are silicon-28
5% of the atoms are silicon-29
3% of the atoms are silicon-30 | | | Calculate the relative atomic mass of silicon in this sample. | | | | (2) | relative atomic mass = | •••• | | (Total for question = 3 mar | ks) | | Q9. | | |--|--------------------------------| | A carbon atom contains 6 electrons, 7 neutrons and 6 p | protons. | | (i) State the mass number of this carbon atom. | | | | (1 | | | | | (ii) Give the electronic configuration of this carbon aton | n.
(1 | | | (1 | | | | | | (Total for question = 2 marks) | | | | | | | | Q10. | | | An atom of aluminium has an atomic mass of 27. | | | 7 at atom of atammam has an atomic mass of 27. | | | Aluminium has an atomic number of 13. | | | | | | Aluminium has an atomic number of 13. State the number of electrons, neutrons and protons in | this atom. | | Aluminium has an atomic number of 13. State the number of electrons, neutrons and protons in number of electrons = | (3 | | Aluminium has an atomic number of 13. State the number of electrons, neutrons and protons in number of electrons = number of neutrons = | (3 | | Aluminium has an atomic number of 13. State the number of electrons, neutrons and protons in number of electrons = number of neutrons = | (3 | Q11. Figure 1 shows the dot and cross diagram for a molecule of ammonia. | | | Figure 1 | | | |----------|------------------|--|------------------------------|-----| | (i) Wha | at do | the dots and crosses represent in the diagram? | | | | | A
B
C
D | electrons neutrons protons nuclei | | (1) | | (ii) Giv | e the | e formula for the molecule of ammonia. | | (1) | | | | | (Total for question = 2 mark | ːs) | Q12. Figure 4 shows the atomic number and mass number of two isotopes of argon. | isotope | atomic number | mass number | |----------|---------------|-------------| | argon-38 | 18 | 38 | | argon-40 | 18 | 40 | Figure 4 | Describe the structure of an atom of argon-38 and of an atom of argon-40. | | |---|----| | | 3) | (Tatal for avaction - 2 montes | ٠, | (Total for question = 3 marks) Q13. * A sample of magnesium contains 79% of magnesium-24 atoms 10% of magnesium-25 atoms 11% of magnesium-26 atoms. In most calculations the relative atomic mass of magnesium used is 24. Use this information to explain why, in this sample, magnesium has a relative atomic mass of 24.3. | (6) | |-----| (Total for question = 6 marks) Q14. | can be | represented | as | |--------|-------------|--------------------| | | can be | can be represented | This ion of element X has 54 electrons. Calculate the number of protons and the number of neutrons in this ion. number of protons number of neutrons (Total for question = 2 marks) Q15. Answer the question with a cross in the box you think is correct \square . If you change your mind about an answer, put a line through the box \square and then mark your new answer with a cross \square . An atom of potassium has atomic number 19 and mass number 39. (i) Give the electronic configuration of this potassium atom. (1) (ii) This potassium atom forms the ion K+. Which row shows the number of protons and the number of neutrons in this potassium ion, K+? (1) | | | number of protons | number of neutrons | |------|---|-------------------|--------------------| | X | Α | 19 | 19 | | P. 4 | В | 19 | 20 | | Š | C | 20 | 19 | | Х | D | 20 | 20 | (Total for question = 2 marks) Q16. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Magnesium has an atomic number of 12. Which line in the table shows the correct numbers of protons, neutrons and electrons in a positively charged magnesium ion? (1) | | | number of | | | |-----|---|-----------|----------|-----------| | | | protons | neutrons | electrons | | | Α | 10 | 12 | 12 | | S | В | 10 | 12 | 10 | | Š | C | 12 | 10 | 12 | | ij. | D | 12 | 12 | 10 | (Total for question = 1 mark) Q17. An aluminium atom has the atomic number 13 and the mass number 27. Which row shows the numbers of subatomic particles present in an aluminium ion, Al3+? (1) | | protons | neutrons | electrons | |-----|---------|----------|-----------| | □ A | 13 | 14 | 13 | | □В | 13 | 14 | 10 | | □ C | 14 | 13 | 10 | | □ D | 14 | 13 | 17 | (Total for question = 1 mark) Q18. An atom of an element has an atomic number and a mass number. Draw one straight line from each of these to the numbers of subatomic particles it shows to be present in an atom. (Total for question = 2 marks) # Mark Scheme Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|------| | | final answer of 47.91 / 47.9 with or without working (3) All percentages given as: | 48 without working = 0 | (3) | | | Ti-46 = 8
Ti-47 = 7
Ti-48 = 75
Ti-49 = 6
Ti-50 = 4 (1) | allow 7-7.5 for Ti-47
(7.5 gives 48.145) | | | | 46 x 8 = (368)
47 x 7 = (329)
48 x 75 = (3600)
49 x 6 = (294)
50 x 4 = (200)
(= 4791) (1) | allow ECF for MP2 | | | | 4791 = 47.91 (1) | [Note: answer of 48 can score MP3 but must have correct working] | | | | | Allow ECF but answer
for MP3 must be
between 46 and 50 | | Q2. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | | ²⁴ Mg, ²⁵ Mg and ²⁶ Mg have 12, 13
and 14 neutrons respectively / | allow {each isotope has / they have} a different number of | (2) | | | ²⁵ Mg, ²⁶ Mg have 1 and 2 more
neutrons than ²⁴ Mg respectively (2) | neutrons (in nucleus) / different
numbers in two of the isotopes (1) | EXP | | | | ignore any similarities | | # Q3. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (i) | (atoms with) same (number of) protons (1) | ignore any mention of electrons reject answers in terms of elements (plural) but allow element (singular) | (2) | | | (atoms with) different (number of) neutrons (1) | if no other mark: allow same atomic number and different mass number (1) | | | Question
number | Answer | Mark | |--------------------|--|------| | (ii) | A 5 protons is the only correct answer | (1) | | | B is not correct because there are 5 or 6 neutrons | | | | C is not correct because the atomic number is 5 | | | | D is not correct because there are 5 or 6 neutrons | | ### Q4. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---------------------|------| | (i) | A 20 20 is the only correct answer B, C and D are incorrect because calcium does not have 40 protons; calcium does not have 60 neutrons; calcium does not have 60 protons | | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------------------------------------|--------------------------|------| | (ii) | explanation linking period 4 (1) | | (2) | | | four shells of electrons (1) | reject four outer shells | | # Q5. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|------| | (i) | An explanation linking same number of electrons and protons (1) so charges {cancel / balance one another} (1) | allow same number of positive and negative charges | (2) | | Question
number | Answer | Additional guidance | Mark | |--------------------|-------------------------------|---|------| | (ii) | 37 - 17 (1) (= 20) (neutrons) | allow 20 without working
reject '- 20' | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|-------------------------------------|------| | (iii) | atoms {of same element / with same number of protons} / same atomic number (1) | ignore electrons
reject neutrons | (2) | | | different number of neutrons /
different mass number (1) | reject protons /electrons | | #### Q6. | Question number | Answer | Additional guidance | Mark | |-----------------|--|---|------------| | | Any two from (in modern model) atoms are formed of sub-atomic particles (1) atoms have a nucleus (1) atoms contain protons (1) atoms contain neutrons (1) atoms contain (shells of) electrons (1) atoms of same element can have different numbers of neutrons / isotopes exist (1) | allow (for Dalton's model) atoms are indivisible ignore statements that are simply the negative of those in the question reject each comparison with 'plum pudding model' | (2)
AO1 | Q7. | Question
Number | Answer | | Additional guidance | Mark | |--------------------|---|-----------------|--|---------------| | (i) | particle electron | relative charge | do not allow
more than 1
line from | (2)
AO 1 1 | | | neutron | 0 | any particle | | | | proton 3 correct = 2 marks | -1 | | | | | 1 correct = 2 marks
1 correct = 1 mark | | | | | Question
Number | Answer | Mark | |--------------------|---|--------| | (ii) | C 1 | (1) | | | 1. The only correct answer is C | AO 1 1 | | | A is not correct because mass is 1 | | | | B is not correct because this is relative mass of electron | | | | D is not correct because mass cannot be negative | | Q8. | Question number | Answer | Additional guidance | Mark | |-----------------|---|---|------------| | (i) | (isotopes of same element) have
the same number of protons | allow same number of electrons reject same number of neutrons | (1)
AO1 | | Question number | Answer | Additional guidance | Mark | |-----------------|--|---|------------| | (ii) | total mass of 100 atoms =
(28 x 92) + (29 x 5) + (30 x 3) (1)
(= 2811) | correct final answer without
working (2) | (2)
AO2 | | | relative atomic mass = <u>2811</u> (= 28.11) (1) | final answer must contain at least
one decimal place | | # Q9. | Question
number | Answer | Additional guidance | Mark | |--------------------|-------------|---------------------|------| | (i) | 13/thirteen | allow 6 + 7 | (1) | | Question
number | Answer | Additional guidance | Mark | |--------------------|--------|---|------| | (ii) | 2.4 | allow commas
allow 2.4.0.
allow diagram | (1) | ### Q10. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---------------------|--------------| | | number of electrons = 13 (1)
number of neutrons = 14 (1)
number of protons = 13 (1) | allow 27-13 (=14) | (3)
A01-1 | ### Q11. | Question
Number | Answer | Mark | |--------------------|---------------------------------|--------| | (i) | A electrons | (1) | | | 1. The only correct answer is A | AO 1 1 | | | B is factually incorrect | | | | C is factually incorrect | | | | D is factually incorrect | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|-----------------|--|----------------| | (ii) | NH ₃ | do not allow NH ³ / nh ₃ / NH3 etc | (1)
AO 3 2b | | | | allow H₃N | | #### Q12. | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--|--------------------| | | A description to include | | (3) | | | both have 18 electrons/2.8.8 (in
shells /orbits) (1) | | AO 3 1a
AO 3 1b | | | both have 18 protons (in the nucleus) (1) | allow argon 40
has two more
neutrons than | | | | argon-38 has 20 neutrons AND
argon-40 has 22 neutrons (in the
nucleus) (1) | argon 38 / ORA | | | | | ignore generic
definition of an
isotope | | ## Q13. | Question
number | Answer | Mark | |--------------------|---|------| | * | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities | (6) | | | and skills outlined in the generic mark scheme. | EXP | | | The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. | | | | AO2 (6 marks) | | | | relative atomic mass of magnesium is 24.3 (and not 24) due to the existence of more than one isotope | | | | accurate relative mass is calculated using weighted mean magnesium-25 and magnesium-26 are both heavier isotopes than magnesium-24 | | | | magnesium-24 has highest percentage (therefore) the relative atomic mass is closer to 24 than 25 or 26 | | | | calculation of relative atomic mass consider 100 atom sample | | | | in the given sample 79 atoms have a mass of 24 | | | | in the given sample 10 atoms have a mass of 25 in the given sample 11 atoms have a mass of 26 calculate total mass of 100 atoms | | | | divide by 100 to find relative atomic mass OR | | | | fraction of magnesium-24 = 79/100 fraction of magnesium-25 = 10/100 | | | | • fraction of magnesium-26 = 11/100 | | | | • relative atomic mass
= (79/100 x 24) + (10/100 x 25) + (11/100 x 26)
= 18.96 + 2.5 + 2.86 | | | | = 24.3 | | | Level | Mark | Descriptor | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | The explanation attempts to link and apply knowledge and understanding of scientific ideas, flawed or simplistic connections made between elements in the context of the question. (AO2) Lines of reasoning are unsupported or unclear. (AO2) | | Level 2 | 3-4 | The explanation is mostly supported through linkage and application of knowledge and understanding of scientific ideas, some logical connections made between elements in the context of the question. (AO2) Lines of reasoning mostly supported through the application of relevant evidence. (AO2) | | Level 3 | 5-6 | The explanation is supported throughout by linkage and application of knowledge and understanding of scientific ideas, logical connections made between elements in the context of the question. (AO2) Lines of reasoning are supported by sustained application of relevant evidence. (AO2) | # Q14. | Question number | Answer | Mark | |-----------------|---|------| | | number of protons = 52 (1) | (2) | | | number of neutrons = 125 - number of protons (1) (= 73) | A02 | ## Q15. | Question number | Answer | Additional guidance | Mark | |-----------------|---------|---|------| | (i) | 2.8.8.1 | allow any separator including gaps e.g. 2 8 8 1 | (1) | | | | send to review any diagrams | | | Question number | Answer | Mark | |-----------------|---|------| | (ii) | B 19 (protons) 20 (neutrons) This is the only correct answer. A is incorrect because there are 20 neutrons in the ion C is incorrect because there are 19 protons and 20 neutrons D is incorrect because there are 19 protons in the ion | (1) | ## Q16. | Question
number | Answer | Mark | |--------------------|---|------| | | D 12 protons, 12 neutrons, 10 electrons | (1) | #### Q17. | Question
number | Answer | Mark | |--------------------|---|------| | | B 13 14 10 is the only correct answer | (1) | | | A is incorrect because it is the numbers of subatomic particles in the atom not the ion C is incorrect because it would be an isotope of silicon with a +4 charge to it D is incorrect because it would be another isotope of silicon but with a 3- charge to it. | | #### Q18.