Mark schemes

Q1. (a)	Correct graph		
	Min point at (0, 5), shape maintained	B1	
(b)	Correct graph Min point at (3, 0), shape maintained		
		B1	[2]
02.			
(a)	$y = x^2 + 2$		
	$oe \ eg \ y - 2 = x2$	B1	
(b)	Same shape graph with vertex touching negative x -axis (within 1 mm) at any point > 2 mm from the origin		
	Allow any incorrect labelling	B1	
			[2]

Q3.

(b) Correct graph drawn

Β1

Β1

(c) Correct graph drawn

B1

[3]

Q4.

(a) Fully correct graph passing through (-2, -8)(-1, -1)(0, 0)(1, 1) and (2, 8)

B1 x^3 or $y^3 = x$ or at least 4 points from (-2, -8) (-1, -1) (0, 0) (1, 1) and (2, 8) plotted or seen in a table Tolerance of ±1 small square Points can be implied by graph passing through them

B2

Additional Guidance

Tolerance of ±1 small square means it is on the edges of or within the shaded area

Ignore graph drawn outside of $-2 \le x \le 2$	
Ruled straight lines joining (–2, –8) (–1, –1) (0, 0) (1, 1) and (2, 8)	B1
Condone positive gradient at (0, 0)	

Ignore working lines if fully correct graph seen

(b) Fully correct graph

B1 sin (x + 90) or cos x or at least 4 points from (0, 1) (90, 0) (180, -1) (270, 0) and (360, 1) plotted or seen in a table Mark intention

B2

[4]

B2

Additional Guidance	
Ignore graph drawn outside of $0^{\circ} \le x \le 360^{\circ}$	
Ignore working lines if fully correct graph seen	B2
Ruled straight lines joining (0, 1) (90, 0) (180, –1) (270, 0) and (360, 1)	B1
sin <i>x</i> + 90 with < 4 correct points and incorrect graph	BO

Q5.

(a) Given graph translated by

2

Graph must pass through the 5 integer points (±2 mm)

(b)	$-3(-x)^2 + 4(-x) - 5$ or $-3x^2 - 4x - 5$	
	oe	M1

$y = -3\hat{x} - 4x - 5$	
Must have 🖌	Δ1

Additional Guidance

$$y = -(3\dot{x} + 4x + 5)$$

M1 A1 [3]

Q6.

(a)	Correct sketch	
	B1 for one correct step	
		B2

(b)	Correct sketch	
	B1 for one correct step	
		B2

Q7.
$$y = -x^2 + 5x - 2$$
 B1

[1]

Β1

Q8. $y = (x-2)^2$

Β1