Mark schemes

Q1.

Alternative method 1

$$y = 5x - 5$$
M1
$$2(5x - 5) + 22 = 11 \text{ or} \\10x - 10 + 22 = 11$$
Eliminating a variable
oe
M1
$$x^{2} - 10x + 21 = 0$$

$$x^{2} - 10x + 21 = 0$$
Collecting terms
A1

(x - 3)(x - 7) (= 0)	
Correct and accurate method to solve their 3-term quadratic equation	
$\frac{10\pm\sqrt{(-10)^2-4\times1\times21}}{2\times1}$	
2 X 1	M1
x = 3 and = 7 or	
$x = 3 \text{ ang}_{x=10}$	
x = 7 ang = 30	A1
<i>x</i> = 3, <i>y</i> = 10 and <i>x</i> = 7, <i>y</i> = 30	
	A1
Alternative method 2	
10x - 2y = 10	
Equating coefficients	M1
$10x - x^2 = 21$	
Eliminating a variable oe	
$x^2 - 10x + 21 = 0$	M1
$x^2 = 10x + 21 = 0$ Collecting terms	
5	A1

(x - 3)(x - 7) (= 0)*Correct and accurate method to solve their 3-term quadratic equation*

$$\frac{10\pm\sqrt{(-10)^2-4\times1\times21}}{2\times1}$$

M1

$$x = 3 \text{ and } x = 7$$

or

$$x = 3 \text{ and } y = 10$$

or

$$x = 7 \text{ and } y = 30$$

$$x = 3, y = 10 \text{ and}_{=7, y = 30}$$

A1
A1

Alternative method 3

$$x = \frac{5+y}{5}$$

$$2y - \frac{\left(5+y\right)^2}{5} = 11$$
Eliminating a variable
oe
M1
$$y^2 - 40y + 300 = 0$$
Collecting terms
A1

$$(y - 10)(y - 30) (= 0)$$
Correct and accurate method to solve their 3-term quadratic equation
$$\frac{-(-40)\pm\sqrt{(-40)^2 - 4 \times 1 \times 300}}{2 \times 1}$$
M1
$$y = 10 \text{ and } y = 30$$
or
$$x = 3 \text{ and } y = 10$$
or
$$x = 7 \text{ and } y = 30$$
A1
$$x = 3, y = 10 \text{ and } x = 7, y = 30$$

Q2. (a) (3x + 1)2 = 9x + 3x + 3x + 1

B1

[6]

	(b)	9 <i>x</i> ² + 3x -	+ $3x + 1 = 4x - x + 7$ or $9x + 6x + 1 = 4x - x + 7$ oe	B1	
		5 <i>x</i> ² + 7 <i>x</i> -	- 6 = 0	2.	
		57 . 17	ft their expansion of $(3x + 1)2$ with all terms correctly collected on one side of the equation	M1	
		(5 <i>x</i> – 3) (+ 2) (= 0) or $(5 x + a)(x + b)$ (= 0) $ab = \pm 6 \text{ or } 5 b + a = \pm 7 \text{ ft their quadratic}$ or quadratic formula allowing one substitution error	M1	
		x = 0.6 and	d x = -2 or x = 0.6 and y = 2.8 oe	IVII	
				A1	
		y = 2.8 and	d y = -5 or x = -2 and y = -5 oe	A1	
Q3	•				
	Alter	native met	thod 1		
	<i>y</i> = -	3 – 4 <i>x</i>			B1
	χ ² +	2 <i>x</i> + 5 = t	heir –3 <i>x</i> - 4		M1
	X ² +	6x + 8 = 0)		
			ft their −3 − 4x		A1ft
	(<i>x</i> +	4)(x+ 2) (= (0) Correct method to solve their quadratic equation		M1
	X = -	4, -2	ft their quadratic equation		A1ft
	<i>y</i> = 1	3, 5	SC2 Both pairs of correct values without valid working		A1
	Alter	native met	thod 2		
		their $\frac{-3-y}{-3-y}$	$(2^{2}+2)^{2}+2(\frac{-3-y}{y})$		

[6]

B1

$$x = \frac{(\text{their } \frac{-3-y}{4})^2 + 2(\frac{-3-y}{4})}{4}$$

$y = \frac{(\text{their } \frac{-3-y}{4})^2 + 2(\frac{-3-y}{4})}{4} + 5$	M1
$y^2 - 18y + 65 = 0$ ft their $\frac{-3 - y}{4}$	

oe may have common denominator 16

A1ft

(<i>y</i> – 5)(<i>y</i> – 13)	(= 0)	,
	Correct method to solve their quadratic equation	M1
<i>y</i> = 13, 5	ft their quadratic equation	A1ft
<i>x</i> = -4, -2	SC2 Both pairs of correct values without valid working	A1
Alternative m	ethod 3	
$4x + x^2 + 2x +$	- 5 = -3	
	oe	B1
$x^2 + 6x + 5 =$	-3	M1
$x^2 + 6x + 8 =$	0	A1
(x + 4)(x+ 2) (=	= 0) Correct method to solve their quadratic equation	M1
<i>x</i> = −4, −2	ft their quadratic equation	A1ft
<i>y</i> = 13, 5	SC2 Both pairs of correct values with no valid working	A1
Alternative m	ethod 4	
4 <i>x</i> + <i>y</i> = −3 a	ind	
$y - x^2 - 2x =$	5	
or		

4x + y = -3 and

$-2x + y = x^2 + 5$	
oe the equations must be used as simultaneous equations	B1
$4x + x^2 + 2x = -8$ or $x^2 + 6x = -8$ or $6x = -3 - x^2 - 5$	
00	M1
$x^2 + 6x + 8 = 0$	

(x + 4)(x + 2) (=	0)	
	Correct method to solve their quadratic equation	
		M1
<i>x</i> = −4, −2		
,	ft their quadratic equation	
		A1ft

y = 13, 5		
	SC2 Both pairs of correct values with no valid working	
		A1

[6]

A1

Q4.

Alternative method 1 $x^2 - 6x - 20 = 4x$	M1
$x^2 - 5x - 24 (= 0)$	
ft one error in collection of terms with all terms correctly collected on one side	M1
(x-8)(x+3)(=0) or $(x+a)(x+b)(=0)where ab = \pm their 24 or a + b = \pm their 5ft their quadratic$	
or quadratic formula (allow one error)	M1
x = 8 and $y = -4$ or $x = -3$ and $y = 7$	A1
x = 8 and $y = -4$ and $x = -3$ and $y = 7SC2 for both (8, -4) and (-3, 7) by trial and improvement$	
SC1 for either (8, -4) or (-3 , 7) by trial and improvement	A1

Alternative method 2

	y = (4 - y)2 -	6 (4 - <i>y</i>) - 20	
	or $v = 16 - 8$	$3y + y^2 - 24 + 6y - 20$	
	or $y = y^2 - 2$		
	, <u> </u>	allow one error in rearrangement	
		of y = 4 - x	M1
	y² – 3y – 28 (=	= 0)	
		ft one error in expansion and collection of terms with all terms correctly collected on one side	M1
	(y – 7) (y+ 4) (s	= 0) or $(y + a) (y + b) (= 0)$ where $ab = \pm$ their 28 or $a + b = \pm$ their 3 ft their quadratic	
		or quadratic formula (allow one error)	M1
	<i>y</i> = −4 and <i>x</i> = 8	or $y = 7$ and $x = -3$	A1
	<i>y</i> = –4 and <i>x</i> = 8	and $y = 7$ and $x = -3$ SC2 for both (8, -4) and (-3, 7) by trial and improvement SC1 for either (8, -4) or (-3, 7) by trial and improvement	A1
	Additional Guid Substituting∍	dance xy – 4 into quadratic is two errors in rearrangement of y	MO
		x = y – 4 into quadratic followed by collection of terms w ected on one side y2 – 15y + 20 (= 0) (allow one error)	ith all terms ^{мом1}
	Substituting	x = y - 4 into quadratic	
	-	$x^2 - 15y + 20 (= 0)$	
		empt to factorise quadratic where $ab = \pm their 20 \text{ or } a + b = \pm their$	15 м1M1 [5]
Q	5. (a) Draws y	= 3x	
	and	1, 0.1] an,d=() [1.4, 1.6]	
	(^)[0.	B1 Draws $y = 3x$ or states $y = 3x$	
		$\pm \frac{1}{2}$ square tolerance for drawing graph	
		Graph must be seen for x values from 0 to 1.5	

Additional Guidance

Ignore any y values seen

Solutions from a non-graphical method

Ignore other lines drawn on grid

(b) Full evaluation of method and answer

eg1 Cannot divide by x as it could be zero eg2 Should have factorised and then he would have also found that x = 0eg3 Should have used the formula and then he would have also found that x = 0eg4 Should have used a graphical method then he would have also found that x = 0eg5 Should have completed the square then he would have also found that x = 0B1 Partial evaluation eg1 x = 0 has been omitted eg2 Should have factorised eg3 Should have used the formula eg4 Should have drawn a graph eg5 Only found one solution eg6 Cannot divide by zero

Additional Guidance

For B2 there needs to be an evaluation of the method and an indication that x = 0 has been omitted from the answer

	(x + 5) = 0 0 and $x = -2.5$	
x –	0 and x = -2.5	B2
Shc	ould be two solutions	B1
Wh	nat abouŧ∞	B1
The	e answer is wrong	B0
Ign	ore non-contradictory further work	

B0

B2

[4]

M1

M1dep

 $16 - 4x - 4x *^{2} = 4x + 5$ Allow one error but must be a quadratic inx M1dep

$$x^2 - 12x + 11 (= 0)$$

oe Must be 3 terms

$$(x - 11)(x - 1) (= 0)$$

$$\frac{-12 \pm \sqrt{(-12)^2 - 4(1)(11)}}{2} \text{ or }$$

$$(x - 6)2 - 36 + 11 = 0 \text{ oe}$$
M1

$$x = 11$$
 and $x = 1$
Must have M3 to ft
 $x = 11$ and $y = -7$ or $x = 1$ and $y = 3$
A1ft

$$x = 11 \text{ and } y = -7_{and}$$

 $x = 1 \text{ and } y = 3$

Alternative method $y^2 = 4(4 - y) + 5$

$$y^2 = 16 - 4y + 5$$

$$y^2 + 4y - 21 (= 0)$$

oe Must be 3 terms

$$(y+7)(y-3) (= 0)$$

$$\frac{-4 \pm \sqrt{4^2 - 4(1)(-21)}}{2} \quad or$$

$$(y+2)2 - 4 - 21 = 0 \quad oe$$
M1

$$y = -7$$
 and $y = 3$
Must have M3 to ft
 $x = 11$ and $y = -7$ or
 $x = 1$ and $y = 3$
A1ft

x = 11 and y = -7 and x = -7

Q7.	
(x+3)(x-5) = 4x+1	
00	M1
<i>x</i> 2 + 3 <i>x</i> - 5 <i>x</i> - 15	
or <i>x</i> 2 – 2 <i>x</i> – 15	M1
$x^2 - 6x - 16 = 0$	
00	A1
(x+2)(x-8)	
or $x = -2$	
or <i>x</i> = 8	
ft their quadratic (x+ a)(x+ b) where ab = ±16 or a ± b 6	
Quadratic formula: Allow one error	M1
x = -2 and $x = 8$	
or $x = -2$ and $y = -7$	
or <i>x</i> = 8 and <i>y</i> = 33	
	A1
x = -2 and $y = -7$	
and $x = 8$ and $y = 33$	A1
Q8.	
y = 2 + x $x = y - 2$	
	B1
$2x^2 + 5x + 1 = \text{their}(2x)$	

[6]

[6]

$$2x^{2} + 4x - 1 = 0$$

$$2y^{2} - 4y - 1 = 0$$
Midep
$$\frac{-4 \pm \sqrt{4^{2} - (4 \times 2 \times -1)}}{2 \times 2}$$
or
$$\frac{-4 \pm \sqrt{24}}{4}$$

$$\frac{-4 \pm \sqrt{(-4)^{2} - (4 \times 2 \times -1)}}{2 \times 2}$$
or
$$\frac{4 \pm \sqrt{24}}{4}$$
Mi
$$x = -2.2(...) \text{ and } = 0.2(...)$$
or
$$x = -2.2(...) \text{ and } = -0.2(...)$$
or
$$x = 0.2(...) \text{ and } = 2.2(...)$$

$$y = 2.2(...) \text{ and } x = 0.2(...)$$
or
$$y = 2.2(...) \text{ and } x = 0.2(...)$$
A1
$$x = -2.2 \text{ and } y = -0.2$$

A1

Additional Guidance

BEWARE, roots of 2x3x + 1 = 0 are - 0.22 and - 2.28

Correctly substituting their values from their quadratic scores 3×1 , e.g. $2x^2$

$$\frac{-5\pm\sqrt{5^2-(4\times2\times1)}}{2\times2}$$
 scores M0M0M1A0A0

All four solutions are required to score full marks

Q9.

Alternative method 1 $2x^2 + 7x - 1 = 4x + 1$ *Eliminates a variable* [6]

$2x^2 + 3x - 2 = 0$	
or 2 <i>x</i> 2 + 3 <i>x</i> = 2	
Correctly reduces to three terms	M1dep
(2x – 1)(x+ 2) (= 0) If quadratic formula used here it must be fully correct	M1dep
$x=\frac{1}{2}, x=-2$	
or $x = \frac{1}{2}, y = 3$	
or $x = -2$, $y = -7$ SC3 if from T & I and 2nd answer not obtained	A1
$x = \frac{1}{2}, y = 3$	
and $x = -2, y = -7$	A1
Alternative method 2 $y = 2\left(\frac{y-1}{4}\right)^2 + 7\left(\frac{y-1}{4}\right) - 1$	
Eliminates a variable	M1
$y^2 + 4y - 21 = 0$	
or <i>y</i> 2 + 4 <i>y</i> = 21	
Correctly reduces to three terms	M1dep
(y – 3)(y+ 7) (= 0) If quadratic formula used here it must be fully correct	M1dep
<i>y</i> = 3, <i>y</i> = - 7	
or $y = 3, x = \frac{1}{2}$	
or <i>y</i> = –7, <i>x</i> = – 2 SC3 if from T & I and 2nd answer not obtained	A1
$y = 3, x = \frac{1}{2}$	
and $y = -7$, $x = -2$	

A1