Mark schemes

Q1.
Alternative method 1

$$
y=5 x-5
$$

$$
\begin{aligned}
& 2(5 x-5) * 2=11 \text { or } \\
& 10 x-10 * 2=11
\end{aligned}
$$

Eliminating a variable
oe
$x^{2}-10 x+21=0$
Collecting terms
$(x-3)(x-7)(=0)$
Correct and accurate method to solve their 3-term quadratic equation
$\frac{10 \pm \sqrt{(-10)^{2}-4 \times 1 \times 21}}{2 \times 1}$

$$
\begin{aligned}
& x=3 \text { and }=7 \\
& \text { or } \\
& x=3 \text { and }=10 \\
& \text { or } \\
& x=7 \text { and }=30
\end{aligned}
$$

$x=3, y=10$ and $x=7, y=30$

Alternative method 2

$$
10 x-2 y=10
$$Equating coefficients

$10 x-x^{2}=21$Eliminating a variableoeCollecting terms

$$
x^{2}-10 x+21=0
$$

Correct and accurate method to solve their 3-term quadratic equation

$$
\begin{aligned}
& x=3 \text { and } x=7 \\
& \text { or } \\
& x=3 \text { and } y=10 \\
& \text { or } \\
& x=7 \text { and } y=30 \\
& x=3, y=10 \text { and }=7, y=30
\end{aligned}
$$

Alternative method 3
$\mathrm{x}=\frac{5+y}{5}$

$$
2 y-\left(\frac{5+y}{5}\right)^{2}=11
$$

Eliminating a variable
oe
$y^{2}-40 y+300=0$
Collecting terms
$(y-10)(y-30)(=0)$
Correct and accurate method to solve their 3-term quadratic equation
$\frac{-(-40) \pm \sqrt{(-40)^{2}-4 \times 1 \times 300}}{2 \times 1}$

$$
\begin{aligned}
& y=10 \text { and } y=30 \\
& \text { or } \\
& x=3 \text { and } y=10 \\
& \text { or } \\
& x=7 \text { and } y=30
\end{aligned}
$$

$x=3, y=10$ and $x=7, y=30$

Q2.
(a) $(3 x+1) 2=9 x+3 x+3 x+1$
(b) $9 x^{2}+3 x+3 x+1=4 x-x+7$ or $9 x+6 x+1=4 \bar{x}-x+7$
oe

$$
5 x^{2}+7 x-6=0
$$

ft their expansion of $(3 x+1) 2$ with all terms correctly collected on one side of the equation

$$
\begin{aligned}
(5 x-3)(x+2) & (=0) \text { or }(5 \quad x+a)(x+b)(=0) \\
a b & = \pm 6 \text { or } 5 \quad b+a= \pm 7 f t \text { their quadratic } \\
& \text { or quadratic formula allowing one substitution error }
\end{aligned}
$$

$x=0.6$ and $x=-2$ or $x=0.6$ and $y=2.8$
oe

$$
\begin{gathered}
y=2.8 \text { and } y=-5 \text { or } x=-2 \text { and } y=-5 \\
\text { oe }
\end{gathered}
$$

Q3.
Alternative method 1
$y=-3-4 x$
$x^{2}+2 x+5=$ their $-3 x-4$
$x^{2}+6 x+8=0$
ft their -3-4x
$(x+4)(x+2)(=0)$
Correct method to solve their quadratic equation
$x=-4,-2$
ft their quadratic equation
$y=13,5$
SC2 Both pairs of correct values without valid working

Alternative method 2

$$
x=\left(\text { their } \frac{-3-y}{4}\right)^{2}+2\left(\frac{-3-y}{4}\right)
$$

$y=\left(\text { their } \frac{-3-y}{4}\right)^{2}+2\left(\frac{-3-y}{4}\right)+5$

$$
\begin{aligned}
y^{2}-18 y+65= & 0 \\
& \text { ft their } \frac{-3-y}{4} \\
& \text { oe may have common denominator } 16
\end{aligned}
$$

$(y-5)(y-13)(=0)$
Correct method to solve their quadratic equation

$$
y=13,5
$$

ft their quadratic equation
$x=-4,-2$
SC2 Both pairs of correct values without valid working

Alternative method 3
$4 x+x^{2}+2 x+5=-3$
oe
$x^{2}+6 x+5=-3$
$x^{2}+6 x+8=0$
$(x+4)(x+2)(=0)$
Correct method to solve their quadratic equation
$x=-4,-2$
ft their quadratic equation
$y=13,5$
SC2 Both pairs of correct values with no valid working

Alternative method 4
$4 x+y=-3$ and
$y-x^{2}-2 x=5$
or
$4 x+y=-3$ and

$$
-2 x+y=x^{2}+5
$$

oe
the equations must be used as simultaneous equations

$$
\begin{aligned}
& 4 x+x^{2}+2 x=-8 \text { or } x^{2}+6 x=-8 \\
& \text { or } \\
& 6 x=-3-x^{2}-5 \\
& \quad \text { oe }
\end{aligned}
$$

$$
x^{2}+6 x+8=0
$$

$$
(x+4)(x+2)(=0)
$$

Correct method to solve their quadratic equation

$$
x=-4,-2
$$

ft their quadratic equation

$$
y=13,5
$$

SC2 Both pairs of correct values with no valid working

Q4.
Alternative method 1
$x^{2}-6 x-20=4 x$
$x^{2}-5 x-24(=0)$
ft one error in collection of terms with all terms correctly collected on one side

$$
\begin{aligned}
(x-8)(x+3)(& =0) \text { or }(x+a)(x+b)(=0) \\
& \text { where } a b= \pm \text { their } 24 \text { or } a+b= \pm \text { their } 5 \\
& \text { ft their quadratic } \\
& \text { or quadratic formula (allow one error) }
\end{aligned}
$$

$x=8$ and $y=-4$ or $x=-3$ and $y=7$
$x=8$ and $y=-4$ and $x=-3$ and $y=7$
SC2 for both $(8,-4)$ and $(-3,7)$ by trial and improvement
SC1 for either $(8,-4)$ or $(-3,7)$ by trial and improvement

Alternative method 2

$$
\begin{gathered}
y=(4-y) 2-6(4-y)-20 \\
\text { or } y=16-8 y+y 2-24+6 y-20 \\
\text { or } y=y 2-2 y-28 \\
\text { allow one error in rearrangement } \\
\text { of } y=4-x
\end{gathered}
$$

$$
y^{2}-3 y-28(=0)
$$

ft one error in expansion and collection of terms with all terms correctly collected on one side

$$
\begin{aligned}
& (y-7)(y+4)(=0) \text { or }(y+a)(y+b)(=0) \\
& \\
& \text { where ab}= \pm \text { their } 28 \text { or } a+b= \pm \text { their } 3 \\
& \\
& \\
& \text { ft their quadratic } \\
& \\
& \text { or quadratic formula (allow one error) }
\end{aligned}
$$

$$
y=-4 \text { and } x=8 \text { or } y=7 \text { and } x=-3
$$

$y=-4$ and $x=8$ and $y=7$ and $x=-3$
SC2 for both $(8,-4)$ and $(-3,7)$ by trial and improvement SC1 for either $(8,-4)$ or $(-3,7)$ by trial and improvement

Additional Guidance

Substituting $* y-4$ into quadratic is two errors in rearrangement of y

Substituting $x=y-4$ into quadratic followed by collection of terms with all terms correctly collected on one side $y 2-15 y+20(=0)$ (allow one error)

Substituting $x=y-4$ into quadratic
followed by $y 2-15 y+20(=0)$
followed by attempt to factorise quadratic where $\mathrm{ab}= \pm$ their 20 or $\mathrm{a}+\mathrm{b}= \pm$ their 15
M0M1M1

Q5.
(a) Draws $y=3 x$
and
$(x=)[-0.1,0.1]$ and $=0[1.4,1.6]$
B1 Draws $y=3 x$ or states $y=3 x$
$\pm \frac{1}{2}$ square tolerance for drawing graph
Graph must be seen for x values from 0 to 1.5

Additional Guidance
Ignore any y values seen
Solutions from a non-graphical method

Ignore other lines drawn on grid
(b) Full evaluation of method and answer
eg1 Cannot divide by x as it could be zero
eg2 Should have factorised and then he would have also found that $x=0$
eg3 Should have used the formula and then he would have also found that $x=0$
eg4 Should have used a graphical method then he would
have also found that $x=0$
eg5 Should have completed the square then he would have
also found that $x=0$
B1 Partial evaluation
eg1 x = 0 has been omitted
eg2 Should have factorised
eg3 Should have used the formula
eg4 Should have drawn a graph
eg5 Only found one solution
eg6 Cannot divide by zero

Additional Guidance
For B2 there needs to be an evaluation of the method and an indication that $x=0$ has been omitted from the answer
$x(2 x+5)=0$
$x=0$ and $x=-2.5$

Should be two solutions

What aboukx

The answer is wrong

Ignore non-contradictory further work

Q6.
$(4-x) 2=4 x+5$

$16-4 x-4 x *^{2}=4 x+5$

Allow one error but must be a quadratic inx

$$
x^{2}-12 x+11(=0)
$$

oe Must be 3 terms

$$
\begin{aligned}
(x-11)(x-1)(= & 0) \\
& \frac{--12 \pm \sqrt{(-12)^{2}-4(1)(11)}}{2} \text { or } \\
& (x-6) 2-36+11=0 \text { oe }
\end{aligned}
$$

$$
x=11 \text { and } x=1
$$

Must have M3 to ft

$$
x=11 \text { and } y=-7 \text { or } x=1 \text { and } y=3
$$

$$
\begin{aligned}
& x=11 \text { and } y=-7 \text { and } \\
& x=1 \text { and } y=3
\end{aligned}
$$

Alternative method

$$
y^{2}=4(4-y)+5
$$

$$
y^{2}=16-4 y+5
$$

$$
y^{2}+4 y-21(=0)
$$

$$
\text { oe Must be } 3 \text { terms }
$$

$$
\begin{aligned}
(y+7)(y-3)(=0) & \\
& \frac{-4 \pm \sqrt{4^{2}-4(1)(-21)}}{2} \\
& \text { or } \\
& (y+2) 2-4-21=0
\end{aligned} \text { oe }
$$

$$
\begin{array}{ll}
y=-7 \text { and } y=3 & \\
& \text { Must have M3 to ft } \\
& x=11 \text { and } y=-7 \text { r } \\
& x=1 \text { and } y=3
\end{array}
$$

$x=11$ and $y=-7$ and

$$
x=1 \text { and } y=3
$$

Q7.

$$
\begin{gathered}
(x+3)(x-5)=4 x+1 \\
o e
\end{gathered}
$$

$$
x 2+3 x-5 x-15
$$

$$
\text { or } x 2-2 x-15
$$

$$
x^{2}-6 x-16=0
$$

$$
(x+2)(x-8)
$$

$$
\text { or } x=-2
$$

$$
\text { or } x=8
$$

ft their quadratic
$(x+a)(x+b)$ where $a b= \pm 16$ or $a \pm b 6$
Quadratic formula: Allow one error

$$
\begin{aligned}
& x=-2 \text { and } x=8 \\
& \text { or } x=-2 \text { and } y=-7 \\
& \text { or } x=8 \text { and } y=33
\end{aligned}
$$

$x=-2$ and $y=-7$
and $x=8$ and $y=33$

Q8.

$$
y=2+x
$$

$$
x=y-2
$$

$2 x^{2}+5 x+1=$ their $(2 x)+$

$$
\begin{aligned}
& o e \\
& y=2(y-2) 2+5(y-2)+1 \\
& 2 y 2-8+8+5 y-y-10+1=0
\end{aligned}
$$

$$
\begin{aligned}
2 x^{2}+4 x-1= & 0 \\
& 2 y^{2}-4 y-1=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-4 \pm \sqrt{4^{2}-(4 \times 2 \times-1)}}{2 \times 2} \\
& \text { or } \begin{array}{l}
\frac{-4 \pm \sqrt{24}}{4} \\
\\
\qquad \text { or } \frac{-4 \pm{\sqrt{(-4)^{2}-(4 \times 2 \times-1)}}_{2 \times 2}^{2}}{}
\end{array} .
\end{aligned}
$$

$$
x=-2.2(\ldots) \text { and }=0.2(\ldots)
$$

$$
\text { or } x=-2.2(\ldots) \text { and }=-0.2(\ldots)
$$

$$
\text { or } x=0.2(\ldots) \text { and }=2.2(. . .)
$$

$$
\begin{aligned}
& y=2.2(\ldots) \text { and } y=-0.2(\ldots) \\
& \text { or }_{y}=2.2(\ldots) \text { and } x=0.2(\ldots) \\
& \text { ory } y=-0.2(\ldots) \text { and } x=-2.2(\ldots)
\end{aligned}
$$

$x=-2.2$ and $y=-0.2$
and $x=0.2$ ande 2.2

$$
\begin{aligned}
& y=2.2 \text { and } x=0.2 \\
& \text { and } y=-0.2 \text { and } x=-2.2
\end{aligned}
$$

Additional Guidance
BEWARE, roots of $2 * \overline{5} x+1=0$ are -0.22 and -2.28
Correctly substituting their values from their quadratic scores 5×1 7, e.g. 2×2 0
$\frac{-5 \pm \sqrt{5^{2}-(4 \times 2 \times 1)}}{2 \times 2}$ scores MOMOM1AOAO
All four solutions are required to score full marks

Q9.
Alternative method 1
$2 x^{2}+7 x-1=4 x+1$
Eliminates a variable

$$
\begin{aligned}
& 2 x 2+3 x-2=0 \\
& \text { or } 2 x 2+3 x=2
\end{aligned}
$$

Correctly reduces to three terms
$(2 x-1)(x+2)(=0)$
If quadratic formula used here it must be fully correct
$x=\frac{1}{2}, x=-2$
or $x=\frac{1}{2}, y=3$
or $x=-2, y=-7$
SC3 if from T \& I and 2nd answer not obtained
$x=\frac{1}{2}, y=3$
and $x=-2, y=-7$

Alternative method 2

$$
y=2\left(\frac{y-1}{4}\right)^{2}+7\left(\frac{y-1}{4}\right)-1
$$

Eliminates a variable
$y 2+4 y-21=0$
or $y 2+4 y=21$
Correctly reduces to three terms

$$
(y-3)(y+7)(=0)
$$

If quadratic formula used here it must be fully correct
$y=3, y=-7$
or $y=3, x=\frac{1}{2}$
or $y=-7, x=-2$
SC3 if from T \& I and 2nd answer not obtained
$y=3, x=\frac{1}{2}$
and $y=-7, x=-2$

