Mark schemes

Q1.

$$
x=3
$$

Q2.
(a) Straight line through
$(0,1),(1,2),(2,3),(3,4),(4,5)$ and $(5,6)$

B1 Two correct points plotted
(b) $x=2$ and $y=3$
ft their linear graph from (a)

Q3.
Alternative method 1

$$
\begin{aligned}
& 4 x-6 y=24 \\
& 10 x+12 y=6 \\
& \text { and } \\
& 10 x-15 y=60
\end{aligned}
$$

$$
\begin{aligned}
& 9 x= \\
& 27 \text { or } \\
& x=3 \\
& 27 y=-54 \\
& \text { or } y=-2
\end{aligned}
$$

$$
x=3 \text { and } y=-2
$$

oe
SC1 for $x=3$ and $y=-2$ without working or using trial and improvement

Alternative method 2

$$
\begin{aligned}
& y=\frac{2 x-12}{3} \\
& \text { or } y=\frac{3-5 x}{6} \\
& x=\frac{12+3 y}{2} \\
& \text { or } x=\frac{3-6 y}{5} \\
& \text { oe } \\
& \text { Rearranging }
\end{aligned}
$$

```
\(9 x=27\)
    or \(x=3\)
```

$27 y=-54$
or $y=-2$
oe
Elimination of one variable and simplification
$x=3$ and $y=-2$
oe
SC1 for $x=3$ and $y=-2$ without
working or using trial and improvement

Q4.
Alternative method 1
$4 x-6 y=48$
and
$18 x+6 y=-15$
$6 x-9 y=72$
(and
$6 x+2 y=-5)$
$22 x=33$
or $x=1.5$
$-71 y=77$
or $y=-7$
oe
Elimination of one variable
$x=1.5$ and $\quad y=-7$
oe
SC1 for $x=1.5$ and $y=-$ Zुithout working or using trial and improvement

Alternative method 2
$x=\frac{24+3 y}{2}$ or $y=\frac{2 x-24}{3}$
or $x=\frac{-5-2 y}{6}$ or $y=\frac{-5-6 x}{2}$
oe
Rearranging
$22 x=33$
or $x=1.5$
$-71 y=77$
or $y=-7$
oe
Elimination of one variable
$x=1.5$ and $\quad y=-7$
oe
SC1 for $x=1.5$ and $y=-$ Without working or using trial and improvement

Q5.

$$
\begin{array}{r}
4 x+6 y=20 \text { or } 12 x-3 y=-3 \\
\text { oe Allow one error }
\end{array}
$$

$$
7 y=21 \text { or } 14 x=7 \text { oe }
$$

$x=\frac{1}{2}$ and $y \neq 3$ oe

Alternative method
$x=\frac{10-3 y}{2}$ or $y=4 x+1$ oe
or $y=\frac{10-2 x}{3} \quad$ or $x=\frac{y-1}{4}$
$7 y=21$ or $14 x=7 o e$
$x=\frac{1}{2}$ and $y=3$ oe

Q6.
$2 x+3 y=6 x+9 y=159$
$539 x-3 y \quad 6 x-2 y=38 o e$
Allow one error
$11 x=110 \quad 11 y=121$
M1

M1
$x=10$ or $y=11$
$x=10$ and $y=11$

Alternative method
$y=3 x-19 \quad x=\frac{y+19}{3}$ oe
Allow one error
$2 x+3(3 x-19)=53 \quad \frac{2(y+19)}{3}+3 y=53$
$11 x-57=53 \quad 11 y+38=159$

$$
x=10 \text { or } y=1
$$

$$
x=10 \text { and } y=11
$$

Q7.

$$
\begin{array}{ll}
(2 x+3 y=15.5) & (2 x+3 y=15.5) \\
2 x+2 y=12 & 3 x+3 y=18
\end{array}
$$

Equates coefficients

$$
\begin{aligned}
& y=3.5 \\
& \text { or } x=2.5
\end{aligned}
$$

oe

$$
x=2.5 \text { and } y=3.5
$$

Q8.
$3 b+g=62$ or $b+2 g=59$
$3 b+g=62$ and $3 b+6 g=177$ or
$6 b+2 g=124$ and $b+2 g=59$ or
$3 b+g=62$ and $2 b-g=3$
6errect attempt at elimination ...
Allow one error in the two elimination steps If substitution method used then allow one error in the substitution or simplification
$5 g=115$ or $5 b=65$
oe
$b=13$ and $g=23$
SC2 for correct solution by trial and improvement

Q9.

$$
\begin{array}{lc}
(5 x-4 y=24) & (5 x-4 y=24) \\
2 x+4 y=18 & 5 x+10 y=45 \\
& \text { oe for equating coefficients }
\end{array}
$$

$$
7 x=42 \quad 14 y=21
$$

Correct elimination from their equations
$x=6 \quad$ and $\quad y=1.5$
SC1 correct answers with no working or using trial and improvement

Alternative method
$x=9-\& \quad$ and $\quad 5(9-2 y)-4 y=24$
or
$y=\frac{9-x}{2} \quad$ and $\quad 5 x-\frac{4(9-x)}{2}=24$
Allow one error ... it can be a substitution errerg(eg x 2y) or a sign error in the equation

Simplifying and solving as far as $14 y=21$ or $7 x=42$ Correct simplification from their substitution
$x=6 \quad$ and $\quad y=1.5$
SC1 correct answers with no working or using trial and improvement

Q10.
Alternative method 1
$2 x+x=18+6$
oe
Eliminates a variable
Implied by $3 x=n$, where ns
$3 x=24 \quad 0 x=8$
oe
$x=8$ and $y=2$

Alternative method 2
$y--2 y=18-2 \times 6 y+-2 y=18-12$

```
or \(y+2 y=18-2 \times 6\) 甲म \(2 y=18-12\)
    oe
    Eliminates a variable
    Implied by \(2 x-2 y=12\) followed bynunthere \(m<18\)
```

$3 y=6$ or $-3 y=-6 y$ or2 or $-y=-2$
oe
$x=8$ and $y=2$

Alternative method 3
$\frac{18-y}{2}=y+6$
or $18-2 x \overline{\bar{x}}-6$
oe
Eliminates a variable
$3 x=24$ or $=8$ or $3 y=610 \neq 2$
oe
Collects terms
$x=8$ and $y=2$

Alternative method 4
Correctly evaluated trial of at least one pair of values in one equation for which they do not work

The pair of values must not be given as the answer

Correctly evaluated trial of at least three pairs of values in one equation for which they do not work

$$
\begin{aligned}
& \text { e.g. } 9-2=7 \\
& 2 \times 11+5=27 \\
& 10-(-2)=12
\end{aligned}
$$

With none of the three pairs of values given as the answer
$x=8$ and $y=2$

Additional Guidance
One correct value with one incorrect value (or no second value) and no working
M1A1A0
e.g. $x=6$ and $y=2$
e.g. $y=2$
$(8,2)$ or 8,2 on answer line (with or without working)
$(2,8)$ or 2,8 on answer line with no working

Embedded, correct values in one equation only e.g. $2 \times 8+2=18$

Embedded, correct values in both equations i.e. $2 \times 8+2=18$ and $8-2=6$ M1A1A0

Please check crossed out work, which may indicate correct rejection of a trial in this question, as covered in alternative method 4

Q11.
$\left(-\frac{1}{3},-1\right)$

Q12.
Alternative method 1
$3 f+4 p=82.97$
Or
$5 f+6 p=131.95$
Must be algebraic not word form.
$9 f+12 p=248.91$
And
$10 f+12 p=263.90$
or $15 f+20 p=414.85$
and
$15 f+18 p=395.85$
Condone one error in totals
$f=14.99$
$p=9.5(0)$
£205.42

Logical argument with steps shown and correct conclusion made Must gain method marks and make conclusion QWC strand iii

Alternative method 2

$$
\begin{aligned}
& 3 f+4 p=82.97 \\
& \text { Or } \\
& 5 f+6 p=131.95
\end{aligned}
$$

$15 f+20 p=414.85$
and
$15 f+18 p=395.85$
$p=9.5(0)$
$82.97+131.95$ - their 9.5(0)
or 214.92 - their 9.5(0)
Subtracting cost of one post from total of 8 panels and 10 posts
£205.42
ft their 9.50
Logical argument with steps shown and correct conclusion made Must gain method marks and make conclusion QWC strand iii

Q13.
(a) $30 y+1206430(y+4 w)$
oe
B1 for 3Qor 120w or $0.3 y+1.2 w$
Do not ignore fw for B2
SC1 for $30+120 c$
Additional Guidance $30 y p+120 w p$

$$
30 p+120
$$

$30 y=120$

$$
0.3 y+120
$$

$$
30 y+1.20
$$B1

$30 y+w 120$ B1
$30 y+120 \mathrm{k} 150 y w$ B1
30nt $120 y$ B0
$30 a+120$ B0
y30 +w120 BO
$30 p+120$B0
$30 p y+120 p w$ B0
Use of letters other than y or w is BOIgnore p as units
(b) Alternative method 1
$2 p+r=265$ orp $p+5 r=200$
or $3 p+6 r=465$
May work in pence or poundsM1

$$
\begin{aligned}
& (2 p+r=265) \\
& 2 p+10 r=400 \\
& 10 p+5 r=1325 \\
& (p+5 r=200)
\end{aligned}
$$

Equating coefficients

```
9r = 135
or r = 15
9p =
1125 or p
```

$=125 \quad$ Eliminating a variable
oe
Pen $=(£) 1.25$ and Ruler $=£ 0.15$Condone 15 p on answer line

Alternative method 2

$$
\begin{aligned}
& 2 p+r=265 \text { orp } p+5 r=200 \\
& \text { or } 3 p+6 r=465
\end{aligned}
$$

May work in pence or pounds

$$
r=265-2
$$

or $r=\frac{200-p}{5}$
$p=200-5 r$
or $p=\frac{265-r}{2}$
Making por rthe subject
oe
$9 p=1125$
or $p=$
125 9r =
135 or $r=$
15 Eliminating a variable
oe

Pen $=(£) 1.25$ and Ruler $=£ 0.15$
Condone 15 p on answer line

Additional Guidance
Accept: £0.15p or 125p with $£$ sign crossed out Do not accept: $0.15 p$ with $£$ sign crossed out or $£ 125 p$
Answers reversed
$2 \times$ pens +1 ruler $=265$ with no further working

T\&I scores 0 or 4
Use any two different letters, e.g. x and y, p and r
Letters not words required for the first M mark, but can be recovered by showing correct working for following M mark(s)

Q14.
$3 a+1.5 b=9(.00)$
or $2 a+4 b=13.2(0)$

$$
\begin{array}{r}
6 a+3 b=1 \& n d \quad 6 a+12 b=39.6 \\
\text { oe equating coefficients } \\
\text { Allow one error in totals }
\end{array}
$$

$9 b=21.6$
Subtracting

Apples $=1.80$

Blackberries $=2.40$
1.8 and 2.4 is A1 AO

Q15.
Draws $3 x+2 y=6$
B1 Works out or plots at least two points satisfying $3 x+2 y=$ 6 eg $(2,0)$ and $(0,3)$

$$
\begin{aligned}
x=2.5 \text { and } y= & -0.7 \\
& \text { ft their graph } \\
& \pm \frac{1}{2} \text { square }
\end{aligned}
$$

Q16.
$15+20 m=40+15 m$
$0=-25+5 \operatorname{mor} 0=25-5 m$
$20 m-15 m=40-15$
$5 m=25$ or $-5 m=-25$
$m=5$
($T=115$

Alternative method

$$
\frac{T-15}{20}=\frac{T-40}{15}
$$

$15(T-15)=20(T-40)$

$$
15 T-225=20 T-800
$$

```
(T =) 115
```

Q17.
$2 y--y=10-13$
or $3 y=-3$
or
$3 x+6 x=10+26$
or $9 x=36$
Eliminates a variable

$$
y=-1 \text { or } x=4
$$

$y=-1$ and $x=4$

Q18.

Alternative method 1

```
\(3 a(+) 4 c(=) 23\)
and
\(3 a(+) 15 c(=) 45\)
or
15a (+) 20c (=)
115
and
\(4 a(+) 20 c(=) 60\)
oe eg works in pence
Multiplies one or both equation(s) to equate coefficients of a
or C
Allow one error in multiplication
```

11c (=) 22
or
11a (=) 55
oe
Subtracts equations to eliminate one variable Allow one error in subtraction
$(a=) 5$ or (ϵ) 2

$$
(a=) 5 \text { and } \xi 2
$$

Alternative method 2

$$
\begin{aligned}
& a=\frac{\frac{23-4 c}{3}}{} \\
& \text { or } a=15-5 c \\
& \text { or } \\
& c=\frac{23-3 a}{4} \\
& \text { or } C=\frac{\frac{15-a}{5}}{} \\
& \text { oe } \\
& \text { Makes Obr c the subject }
\end{aligned}
$$

$\frac{23-4 c}{3}=15-5 c$
or
$\frac{23-3 a}{4}=$
$\frac{15-a}{5}$
oe
Correctly substitutes their expression to eliminate one variable
$(a=) 5$ or $(\epsilon) 2$
$(a=) 5$ and 㳓 2

Additional Guidance
Accept any letters, or 'adult' and 'child', as variables
To allow one error in the first mark of alt 7 , the 'equal' coefficients must be the same. eg allow $3 a+4 c=23$ and $3 a+15 c=15$
but not $3 a+4 c=23$ and $3 a+5 c=45$

