Q1.
(a) 5, 9, 13, 17, 21 seen
allow one error or omission
$5+9+13+17+21=65$
(b) $4 n+1$
oe
B1 4n ($\pm k$

Additional Guidance

$4 \times n+1$	is B2
$4 \times n(+k)$	is B1

Q2.
n and $n+1$ seen
Two consecutive integers expressed algebraically, eg n-1 and n

$$
(n+1) 2-n^{2}
$$

Subtraction of their consecutive integers squared

$$
n^{2}+2 n+1-n^{2}
$$

Correct expansion
$2 n+1$ and explanation why this expression must be odd
Strand (i). Explanation why their expression must be odd

Q3.
(a) $-2,1,6$

B1 for two correct terms
(b) $8 x-5-1$

$$
\begin{aligned}
& 2(a x+b)+1=8 x-5 \\
& \text { or } 2 n+1=8 x-5
\end{aligned}
$$

$\frac{\text { their }(8 x-5-1)}{2}$

$$
\begin{aligned}
& 2 a x+2 b+1=8 x-5 \\
& \text { or } 2 a=8 \text { and } 2 b+1=-5 \\
& \text { or } a=4 \text { and } b=-3
\end{aligned}
$$

$$
\begin{aligned}
& 4 x-3 \\
& 4 x-3
\end{aligned}
$$

Q4.
Alternative method 1
Second differences 8
Implied by $4 n$

Any three values from
$\begin{array}{llll}-2 & 1 & 4\end{array}$
$4 n^{2}+3 n-5$
oe
Allow $a=4 \quad b=3 \quad c=-5$

Alternative method 2
Any 3 of
$a+b+c=24 a$
$+2 b+c=179 a$
$+3 b+c=40$
$16 a+4 b+c=$
71
Using $a n 2+b n+c$

Any 2 equations in 2 unknowns
e.g. $3 a+b=155 a+b=23$
$7 a+b=318 a+2 b=38$
$12 a+2 b=5415 a+3 b=$
69

Correctly eliminates the same letter using two different pairs of equations

$$
4 n^{2}+3 n-5
$$

oe

$$
\text { Allow } c=4 b=3 c=-5
$$

Alternative method 3
Second differences 8
$a=4$
or $c=2-7$ or -5
Using an2 $+b n+c$
$3 a+b=17-2$
and substitutes theira
oe e.g. $b=3$
May also see $a+b c=2$ used to work ๔ut
$4 n^{2}+3 n-5$
oe
Allow $a=4 b=3 c=-5$

Additional Guidance

Q5.
$(5 n-3) 2+1$
$25 \hbar-15 n-15 n+9+1$
Allow one error
Must have an $n 2$ term
$25 n-30 n+10$
$5\left(5 h^{2}-6 n+2\right)$
oe
e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5

Alternative method 1
Use of $a n 2 b n+c$ for terms of quadratic sequence
i.e. any one of
$a+b+c=5$
$4 a+2 b c=50$
$+9 a+c=145$
$3 b+$
$3 a+b=45$
$5 a+b=95$
For eliminating C
$25 n-30 n+10$
$5\left(5 h^{7}-6 n+2\right)$
oe
e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5

Alternative method 2
$\begin{array}{llll}5 & 50 & 145 & 290\end{array}$
$45 \quad 95 \quad 145$
2nd difference of $50 \div 2(=25)$
25 7

Subtracts their 2 Froz terms of sequence
$-20-50-80$

$$
-30 n
$$

$25 n-30 n+10$
$5(5 n-6 n+2)$
oe
e.g. shows that all terms divide by 5 or explains why the expression is a multiple of 5

Q6.
First and second differences correct
i.e. $\begin{array}{llll}4 & 6 & 8 & (10)\end{array}$

22
(2)

Correctly subtracts their $\frac{2}{2} n^{2}$ from given sequence
i.e. 10
11
12
(13
14)
(1) n
dep on M2
$n^{2}+n+9$
oe e.g. $n^{2}+n+10-1$

```
Alternative method
Any three of
\(a+b+c=11\)
\(4 a+2 b+c=15\)
\(9 a+3 b+c=21\)
\(16 a+4 b+c=\)
\(2925 a+5 b+c\)
\(=39 \quad\) Allow one error but each of their three equations must have \(a, b\) and \(c\)
```

Eliminates one variable to obtain a pair of equations in two variables
e.g. $3 a+b=4$ and

$$
5 a+b=6
$$

Allow one error

Eliminates one variable correctly
e.g. $\quad 2 a=2$
dep on M2
$n^{2}+n+9$

$$
\text { oe e.g. } n^{2}+n+10-1
$$

Q7.
14916

