Mark schemes

Q1.
Alternative method 1
$y x=3 x+5$
Cross multiplying
Allow $y \times x=3 \times x+5$

$$
y x-3 x=5 \text { or } 3 x y x=-5
$$

oe
$x=\frac{5}{y-3}$ or $x=\frac{-5}{3-y}$
Must have $x=$ as part of answer ft on one rearrangement error

Alternative method 2

$$
y=3+\frac{5}{x}
$$

$y-3=\frac{5}{x}$
$x=\frac{\text { oe }}{y-3}$ or $x=\frac{-5}{3-y}$
$\begin{aligned} & \text { Must have } x=\text { as part of answer } \\ & \text { ft on one rearrangement error }\end{aligned}$

Additional Guidance
$y x=3 x+5$
$y x+3 x=5$
$x=\frac{5}{y+3}$
$y x=3 x+5$

$$
3 x-y x=5
$$

$x=\frac{5}{3-y}$
$y=3+\frac{5}{x}$

$$
y+3=\frac{5}{x}
$$

$x=\frac{5}{y+3}$

Q2.
$3 y-p=2 h+h y$
$3 y-h y=2 h+p$
$-2 h-p=h y-3 y$
This mark is for correct rearranging from an incorrect 4 term expansion in the first step

$$
y(3-h)=2 h+p
$$

$-2 h-p=y(h-3)$ Dependent on first M mark
$y=\frac{2 h+p}{3-h}$

$$
\frac{-2 h-p}{h-3}=y
$$

Q3.

$$
\begin{aligned}
& 2 h-2 y=5 y+3 \\
& \quad 2 h-y=5 y+3 \text { is } M 0
\end{aligned}
$$

$2 h=5 y+2 y+3$ or $2 h=7 y+3$
for correct rearranging after attempt at expansion seen

$$
\begin{aligned}
& 2 h=5 y+y+3 \text { is } M 1 \\
& 2 h=5 y+2 y+3 \text { is M0 }
\end{aligned}
$$

$$
h=\frac{7 y+3}{2} \quad \text { or } \quad h=\frac{5 y+2 y+3}{2}
$$

Must see $h=$...
ft if M1 M0 or M0 M1 awarded

Alternative method

$$
\begin{array}{ll}
h-y=\frac{5 y+3}{2} & \\
& h-y=2.5 y+1.5 \\
h=\frac{5 y+3}{2}+y \quad h=\frac{5 y+2 y+3}{2} \\
\text { or } \quad h=2.5 y+y+1.5 \text { o } h=3.5 y+1.5 \\
& \text { Must see } h=\ldots
\end{array}
$$

Q4.

$$
r=p-3
$$

Q5.

$$
\begin{array}{r}
y(4 x+9) \text { or } x 4+9 y \\
o e
\end{array}
$$

$$
\begin{array}{r}
4 x y+9 y=8-8 \\
0 e
\end{array}
$$

$$
\begin{gathered}
4 x y+3 x=8-19 \\
\text { or } x(4 y+3)=8+9 \\
o e
\end{gathered}
$$

$$
x=\frac{8-9 y}{4 y+3}
$$

$$
\text { SC3 } \frac{8-9 y}{4 y+3}
$$

Additional Guidance
$y \times(4 x+9)$
$x=\frac{8-9 y}{4 y+3} \quad$ seen with answer $\quad \frac{8-9 y}{4 y+3}$

Q6.
(a) $y 11$
(b) w^{8}
(c) $y-2=3 x$ or $^{\frac{y}{3}=x+\frac{2}{3}}$ or $-3 x=2-y$

$$
\begin{aligned}
\frac{y-2}{3}=x & \text { or } x=\frac{2-y}{-3} \\
& \text { oe } \\
& \text { SC1 for } x=\frac{2-y}{3} \text { or } x=\frac{y+2}{3}
\end{aligned}
$$

Q7.
$a=3$
$(2 x+1)(a x+b)=2 a x^{2}+a x+2 b x+b$
or
$(2 x+1)(3 x+b)=6 x^{2}+3 x+2 b x+b$
$3 x+2 b x=-5 x$ or $3+2 b=-5$
or $3 x-8 x=-5 x$
$b=-4$ and $c=-4$

Q8.
$8 x^{2}-12 x y-10 x y+15 y^{2}$
Allow one term error

$$
8 x^{2}-12 x y-10 x y+15 y^{2}
$$

ft their four terms if M1 awarded Do not ignore fw for final mark

$$
8 x^{2}-22 x y+15 y^{2}
$$

Q9.
(a) $6 x^{2}+4 x+15 x+10$

Allow one sign or arithmetic error. Must see 4 terms including term in x2, 2 terms in x and a constant term

$$
\begin{aligned}
6 x^{2}+19 x & +10 \\
& N B \text { Answer only } \\
& 6 x 2+19 x+b \text { implies M1 } \\
& a x 2+19 x+10 \text { implies M1 }
\end{aligned}
$$

Do not award if incorrect further work
(b) $9 x^{4} y^{8}$

B1 for two of 9, x4 or y8
B1 maximum for any use of \times signs
$B 0$ for any addition eg $9+x 4+y 8$
Deduct one mark for incorrect further work

Q10.

$$
c^{2}=16 \text { or } c=4 \text { or } c=-4
$$

$3 x 2+B x+c x+c^{2}(=3 x 2-d x+16)$

$$
3 x^{2}+12 x+4 x+16 \text { or } 3 x-12 x-4 x+16 \text { oe }
$$

$c=4$ and $c=-4$ oc $4-d$
or $16=-d$ or $-16=d$
oe
$c=4$ and $d=-16$
or
$c=-4$ and $d=16$
One pair of answers or all four answers seen but not paired

$$
\begin{aligned}
& c=4 \text { and } d=-16 \\
& \text { and } \\
& c=-4 \text { and } d= 16 \\
& \text { Both pairs of answers must be correctly paired } \\
& \begin{array}{l}
\text { SC3 for one correct pair or both correct pairs or all four } \\
\text { answers seen but not paired from no working }
\end{array}
\end{aligned}
$$

Q11.

$$
\begin{aligned}
& 6 x^{2}(+) 3 x(+) 8 x(+) 4 \\
& 4 \text { terms, including one } \begin{array}{l}
\text { innsth at least } 3 \text { correct }
\end{array}
\end{aligned}
$$

$$
6 x^{2}+3 x+8 x+4
$$

$$
6 x^{2}+11 x+4
$$

ft correct simplification of their four terms, including one in x SC1 $6 x^{2}+a x+4, a \neq 0, M 1$ not awarded

Q12.

$$
c(d+3)=4-d
$$

$c d+3 c=4-d$

$$
c d+d=4-3 c
$$

$$
\text { or } d(c+1)=4 \tau 3
$$

$$
\begin{aligned}
& d=\frac{4-3 c}{c+1} \\
& \text { oe } d=\frac{-4+3 c}{-c-1}
\end{aligned}
$$

Q13.

$$
w=\frac{y}{2 x}
$$

Q14.

$$
\begin{aligned}
& y-9=\frac{x}{3} \\
& \text { or } 3 y=x+27 \\
& \text { or } 3 y-27 \\
& \text { or } 3(y-9)
\end{aligned}
$$

correct first step in rearranging
or the correct rearrangement without x

$$
\begin{aligned}
& x=3 y-27 \\
& \text { or } x=3(y-9) \\
& \\
& \\
& \text { Accept } 3 y-27 \approx \\
& \text { or } 3(y-9)=x
\end{aligned}
$$

Additional Guidance
Accept - $27+3 y$ for $3 y-27$ throughout
$x=3 y-27$ in working with answer $3 y-27$
$x=(y-9) 3$ (unless recovers)
$x=y 3-27$ (unless recovers)

Multiplication signs are acceptable for M1 but not A1
$x=3 \times y-27$
$3 \times y=x+3 \times 9$

Q15.
$6 x^{2}-16 x y+15 x y-40 y$
Allow one error
$6 x^{2}-16 x y+15 x y-40 y$
Fully correct
$6 x^{2}-x y-40 y$
ft their four terms

Q16.
$6 x^{2}-15 x y+2 x y-5 y^{2}$

$$
\begin{aligned}
& 6 x^{2}-15 x y+2 x y-5 y^{y} \\
& 6 x^{2}-13 x y-5 y^{2} \\
& \quad \text { ft from four terms }
\end{aligned}
$$

Q17.
$y^{2}-4 y+5 y-20$
Allow 1 error
$y^{2}+y-20$

