Q1.

```
\frac{1}{2}\times10\times45
or [200, 225)
or}\frac{\overline{2}}{2}\times5\times30+\frac{\overline{2}}{2}\times(30+45)\times
or 75 + 187.5
                                    oe
```

[225, 275]

Q2.
(a) $[6,6.5]$
(b) Alternative method 1
$\frac{1}{2} \times(22+18) \times(25-10)$ or $15 \times 18+\frac{1}{2} \times 15 \times 4$
oe

Alternative method 2
20×15

300

Additional Guidance
Alternative method 2 uses average velocity \times time

Q3.
(a) $[70,71]$
(b) $[4.4,4.6]$
oe [4 min 24 s, $4 \min 36 \mathrm{~s}]$ or [264 s, 276 s$]$
(c) Tangent drawn at $T=[3.8,4.2]$

Do not allow if line crosses curve

Attempt at gradient of their tangent
eg $\frac{138-131}{4-1}$
Either numerator or denominator must be correct for their tangent
[1.5, 3.5]
SC1 Line drawn from $(4,138)$ that passes through vertical axis between $(0,115)$ and $(0,135)$ and attempt at gradient of this line with numerator or denominator correct

Q4.
(a) Attempts to calculate an area
eg $\frac{1}{2} \times 90 \times 9.4$
Attempts to calculate average speeds over equal time intervals and divides by number of intervals (and multiplies by 120)
[545, 565]
A1 [530, 580]
m(etres)

> Allow correct conversion to other units if supported by an area eg 0.564 km after 564 calculated for area
(b) Tangent drawn at 70 seconds

$$
\begin{aligned}
& \text { Attempt at } \frac{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}}{\text { for their tangent }} \\
& \text { At least one of numerator or denominator correct }
\end{aligned}
$$

[0.06, 0.14]

Q5.
(a) $[6,6.5]$
(b) Tangent drawn at $m=3$
vertical change \div horizontal change For their tangent
[1.8, 2.4]
ft B0 M1
ft their tangent

Q6.
(a) $0.5 \times 20 \times 5$ or 50
or
5×50 or 250
or
$0.5 \times 40 \times 5$ or 100
or
$0.5 \times 5 \times(110+50)$
oe
Working may be on the diagram
e.g. 1 Trapezium rule
e.g. 2 Attempt to count squares and convert to a distance For example
$0.5 \times 2 \times 5=5$ and their 5×10
$0.5 \times 20 \times 5+5 \times 50+0.5 \times 40 \times 5=400$
or
$50+250+100=400$
or
$0.5 \times 5 \times(110+50)=400$
oe
(b) Alternative method 1
$0.5 \times 60 \times 6$ or 180
oe
Distance for first 60 seconds
$0.5 \times 60 \times 6+50 \times 6$ or 480
oe
Distance for first 110 seconds
This mark implies the first M1
$0.5 \times(110+50) \times 6$ is M2

480 and Yes

Alternative method 2
$0.5 \times 60 \times 6$ or 180
oe
Distance for first 60 seconds
(400 - their 180) $\div 6$ or [36, 37]
or
(400-their 180) $\div 50$ or 4.4
or
Correctly builds up to a distance ≥ 400
Remaining distance \div speed \rightarrow time
or
Remaining distance \div time \rightarrow speed
[96, 97] and Yes
or
4.4 and Yes
or
Correct time for their build up and Yes

Q7.
$0.5 \times 20 \times 8$ or 80
or
30×8 or 240
or
$0.5 \times(50+30) \times 8$ or 320
oe
Attempt at any part of the area below the graph up to 50 s
$0.5 \times(8+5) \times 14$ or 91
oe
Attempt at area below the graph for time between 50s and 64 s
their 80 + their 240 + their 91
or
their 320 + their 91
or 411
dep on M1 M1
An attempt at total area for 64 seconds

411 and Amina

