Mark schemes

Q1. $\overline{2} \times 10 \times 45$ or [200, 225) or $\overline{2} \times 5 \times 30 + \overline{2} \times (30 + 45) \times 5$ or 75 + 187.5 oe M1 [225, 275] Α1 [2] Q2. (a) [6, 6.5]В1 (b) Alternative method 1 $\frac{1}{2}$ × (22+18) × (25-10) or 15×18+ $\frac{1}{2}$ ×15×4 oe M1 300 Α1 Alternative method 2 20×15 M1 300 Α1 Additional Guidance

Alternative method 2 uses average velocity × time

[3]

Q3.

(a) [70, 71]

В1

(b) [4.4, 4.6]

oe [4 min 24 s, 4 min 36 s] or [264 s, 276 s]

В1

(c) Tangent drawn at T = [3.8, 4.2]

Do not allow if line crosses curve

B1

	Attempt at gradient of their tangent 138 – 131		
	eg 4-1		
	Either numerator or denominator must be correct for tangent	r their M1	
	[1.5, 3.5] SC1 Line drawn from (4, 138) that passes through ver axis between (0, 115) and (0, 135) and attempt at grathis line with numerator or denominator correct	tical dient of A1	[5]
Q4. (a)	Attempts to calculate an area		
	$\frac{1}{2} \times 90 \times 9.4$		
	eg 2 × 90 × 9.4 Attempts to calculate average speeds over equal time intervals and divides by number of interva multiplies by 120)		
		M1	
	[545, 565] A1 [530, 580]	A2	
	m(etres) Allow correct conversion to other units if supported by area	y an	
	eg 0.564 km after 564 calculated for area	D1	
(1-)	To a count discours at 70 conseque	B1	
(b)	Tangent drawn at 70 seconds	B1	
	$y_2 - y_1$		
	Attempt at $x_2 - x_1$ for their tangent		
	At least one of numerator or denominator correct	M1	
	[0.06, 0.14]	A1	
			[7]
Q5.			
(a)	[6, 6.5]	B1	
(b)	Tangent drawn at $m=3$	B1	

vertical change ÷ horizontal change For their tangent M1 [1.8, 2.4] ft B0 M1 ft their tangent A1ft Q6. (a) $0.5 \times 20 \times 5 \text{ or } 50$ or 5 × 50 or 250 $0.5 \times 40 \times 5$ or 100 $0.5 \times 5 \times (110 + 50)$ oe Working may be on the diagram e.g.1 Trapezium rule e.g.2 Attempt to count squares and convert to a distance For example $0.5 \times 2 \times 5 = 5$ and their 5×10 M1 $0.5 \times 20 \times 5 + 5 \times 50 + 0.5 \times 40 \times 5 = 400$ 50 + 250 + 100 = 400 $0.5 \times 5 \times (110 + 50) = 400$ oe Α1 (b) Alternative method 1 $0.5 \times 60 \times 6 \text{ or } 180$ Distance for first 60 seconds M1 $0.5 \times 60 \times 6 + 50 \times 6$ or 480 Distance for first 110 seconds This mark implies the first M1 $0.5 \times (110 + 50) \times 6$ is M2 M1 480 and Yes Α1 Alternative method 2 $0.5 \times 60 \times 6$ or 180

[4]

oe Distance for first 60 seconds M1 (400 – their 180) ÷ 6 or [36, 37] (400 - their 180) ÷ 50 or 4.4 Correctly builds up to a distance ≥ 400 Remaining distance \div speed \rightarrow time Remaining distance \div time \rightarrow speed M1 [96, 97] and Yes 4.4 and Yes Correct time for their build up and Yes Α1 [5] 07. $0.5 \times 20 \times 8 \text{ or } 80$ 30 × 8 or 240 $0.5 \times (50 + 30) \times 8 \text{ or } 320$ oe Attempt at any part of the area below the graph up to 50s M1 $0.5 \times (8 + 5) \times 14$ or 91 Attempt at area below the graph for time between 50s and 64s M1 their 80 + their 240 + their 91 their 320 + their 91 or 411 dep on M1 M1 An attempt at total area for 64 seconds M1dep 411 and Amina Α1 [4]