M1.
(a) Straight line through

$$
(0,1),(1,2),(2,3),(3,4),(4,5) \text { and }(5,6)
$$

(b) $x=2$ and $y=3$
ft their linear graph from (a)

M2.(a) 90
(b) 240
(c) 410
$150+6 \times 50$ or 450
oe
$450-410$ is B1M1

A and 40
ft their 410 (value indicated for law firm A) A and 40 is B1M1A1

Alternative method

410

Line from $(90,150)$ to $(270,450)$

A and 40
 $$
\text { ft their } 410 \text { (value indicated for law firm A) }
$$

 ft their 410 (value indicated for law firm A)

 ft their 410 (value indicated for law firm A) A and 40 is B1M1A1

M3.(a) $\quad x=2$
(b) Correct straight line drawn
at least 3 diagonal squares long
(c) 2,2
ft their intersection with line A only if BO in part (b)

M4.Any two points of the form $(x, 2 x+1)$ except $(-2,-3)$ and $(-4,-7)$ B1 any one correct point

M5.(a) -7

5
(b) At least 2 points correctly plotted

May be implied from a correct line

Straight ruled line drawn from -3 to 3
$\pm \frac{1}{2}$ square tolerance

M6.
(a) $(2,2)$
(b) Alternative method 1

Draws line through their two correct points-akessing x
or
plots point on x-axis consistent for their two correct points
ft the two points not selected in (a) SC1 0, 3.5

Alternative method 2

$$
2 x(+0)=7
$$

3.5, 0

SC1 0, 3.5

M7.(a) $\quad-4,2,8$
B1 for two correct
(b) Two of their points plotted correctly
ignore incorrect points

Fully correct straight ruled line from $(-2,-4)$ to $(2,8)$

Additional Guidance

Lines must be clearly drawn with a ruled line
(c) 3

$$
\frac{3}{1} \text { on answer line is B1 }
$$

M8.(a) Correct straight line at least 2 vertical squares in length
If drawn without a ruler must be within $\pm 1 \mathrm{~mm}$ of the actual line
(b) Correct straight line at least two 'diagonals' in length

If drawn without a ruler must be within $\pm 1 \mathrm{~mm}$ of the points (1, 1), (2,2) etc

If the correct answers to both parts have been transposed, award B1 in this part

M9.2 or 3 correct plots
$\pm 1 / 2$ square tolerance

Fully correct straight ruled line from $(-3,-3)$ to $(3,9)$
$\pm 1 / 2$ square tolerance

Additional Guidance

2 or 3 correct points from $(-3,-3)(-2,-1)(-1,1)(0,3)(1,5)(2,7)(3,9)$ for the first M1
Ignore additional points

M10.
(a) 7
(b) Points correctly plotted ft from their table

Correct line drawn for $-\ddagger \leq x$
(c) $y=5$ drawn

M11.
(a) $3 \times 4(=12)$

$$
7=3 x-6
$$

$$
\begin{array}{r}
12-6=6 \\
x=4.3
\end{array}
$$

Alternative 1

Correct line fromy=3 to $y=4$

Correct line fromy $=3$ to $y=4$ and plots $(4,7)$ or writes correct justification

Alternative 2

3×4 (=12)

Line should bey $=3 x-5$
(b) $0=3 x-6$

$$
2,0
$$

Alternative

Correct line from $x=1$ to $x=2$ or correct line from $x=2$ to $x=3$

2, 0

M12.(a) -5-1 3
B1 for 1 or 2 correct
(b) Fully correct line drawn

B1ft at least 3 points plotted correctly (using their table) or B1 part of the correct line drawn

$$
\begin{aligned}
&(y=) 7(\text { at } B) \text { and }(y=)-4(\text { at } D) \\
& \text { oe eg } 7 \text { and }(-) 4 \text { on diagram or in working }
\end{aligned}
$$

$$
\begin{array}{r}
1--1(=2) \text { or } 7--4(=11) \\
\text { Using their coordinates }
\end{array}
$$

M14.(a) Correct straight (if not drawn with a ruler then intention to be straight) line graph from $(0,-1)$ to $(4,7)$ with 1 mm

B2 correct line but not from $(0,-1)$ to $(4,7)$ for at least a continuous x distance of 2 .
($1 / 2$ square) tolerance
B2 all integer points (any others must also be correct) between 0 and 4 plotted but line not drawn

Allow a dashed line
B2 correct but more than $1 / 2$ square from tolerance

Only one of these may be awarded.

B1 straight line graph through $(0,-1)$ of any length even if crooked later but not $x=0$ or $y=-1$
B1 Single straight line graph with gradient 2 of any length B1 two correct points calculated (eg in table) or plotted Any line that is not straight is B0 although the B1 for two points calculated or plotted may still be gained
(b) 1.5

Correct (eg from algebra) or ft their grapthdfywn to the graph and then a vertical line to x-axis

M15.
(a) 2
(b) Plots their points

Correct line

(c) $2.5,2.5$
ft if possible

M16.(a) -3, -1, 3
B1 for 1 or 2 correct
(b) At least 2 of their 5 points plotted correctly May be implied from straight line $\pm 1 / 2$ square

Fully correct straight ruled line from -2 to 2
$\pm 1 / 2$ square

