Mark schemes

Q1.
$3 x 2-6 x+x-2$
or $3 x 2-5 x-2$
4 terms with at least 3 correct
$3 \times 2+(a-$ their 5$) x-$ theib $2+$
or a - their $5=8$
or $b-$ their $2=-5$
$a=13$
$b=-3$

Additional Guidance
a - their $5=8, a=13$
a - their $5=8, a=13$ and $b-2=-5, b=-3$
$13 x-3$

Q2.
$x^{2}+a x+a x+(a 2)$
or $x 2+2 a x+(a 2)$
or $2 a=8$ or $a 2+b=7$
$(x+4) 2$
or $a=4$ orb $=-9$
$(x+4) 2-9$
allow $\neq 4$ and $b=-9$

Q3.
$2(x+5)^{2}$

Q4.
$n 2+(n+1)^{2}$

> Condone missing brackets if recovered

$$
n^{2}+n^{2}+2 n+1
$$

$$
2 n^{2}+2 n+1
$$

$2 n(n+1)+1$

$$
\text { Accept } 2 n(n+1)+1=2 n 2+2 n+1 \text { or } 2 n(n+1)=2 n 2+
$$ 2n

for this mark provided the first 3 marks have been earned

Complete solution with all stages clearly shown
Strand (ii)
Clear explanation
Do not award if first line assumes answer with use of $=$ sign
$e g n 2+(n+1) 2=2 n(n+1)+1$

Alternative method

$$
\begin{aligned}
& \left.n^{2}+(n+1) 2-2 n n+1\right) \\
& \quad \text { Condone missing brackets if recovered }
\end{aligned}
$$

$$
n^{2}+n^{2}+2 n+1-n 2(n+1)
$$

$\left.2 n^{2}+2 n+1-2 n+1\right)$
$2 n^{2}+2 n+1-2 n 2-n 2$
Allow $2 n 2+2 n+1-(2 n+2 n)$

Complete solution with all stages clearly shown
Strand (ii)
Clear explanation
Do not award if first line assumes answer with use of $=$ sign

$$
e g n 2+(n+1) 2-2 n(n+1)=1
$$

Q5.
$\frac{n(n-1)+n(n+1)}{2}$
This mark is for combining fractions or if fractions dealt with separately, for combining $n 2$ terms correctly
$\frac{n^{2}-n+n^{2}+n}{4}$ is BO as incorrect combining of fractions
$\frac{n^{2}-n+n^{2}+n}{2}=\frac{2 n^{2}}{2}$

This mark is for eliminating - n and n either by showing by crossing or writing on same line and writing next line without them

$$
\frac{n^{2}}{2}-\frac{n}{2}+\frac{n^{2}}{2}+\frac{n}{2}
$$

$\frac{2 n^{2}}{2}=n^{2}$
This mark is for cancelling 2 top and bottom

$$
\frac{n^{2}}{2}+\frac{n^{2}}{2}=n^{2}
$$

Alternative Method

$$
\frac{n}{2}((n-1)+(n+1))
$$

This mark is for factorising out a common factor.
$\frac{n}{4}(n-1+n+1)$ is BO as incorrect factorisation
$\frac{n}{2}(2 n)$

> This mark is for combining terms inside bracket correctly
n^{2}

$$
1 n^{2} \text { is } O K
$$

Q6.
(a) $6 x^{2}+3 x-8 x-4$

Must have 4 terms shown or implied, including a quadratic term, two linear terms and a constant term. Could be in a grid from box method
Allow one sign or arithmetic error for M1

$$
6 x^{2}-5 x-4
$$

$k x 2-5 x-4$ or $6 x 5 x-k$ both imply M1
(b) $(a x \pm c)(b x \pm d)$

$$
\begin{aligned}
& a b=6, c d=4 \text { or }-4 \\
& 6(x-x 4)+(1)(x-4) \\
& x(6 x+1)-4(6 x+1)
\end{aligned}
$$

$(6 x+1)(x-4)$

Ignore any subsequent attempt to solve once the correct factorisation seen

Q7.
$2(c x+5)+c$ or $2 c x+10+c$
their $2 c x=6 x$ or their $2 c=6$ or $c=3$

Must have attempted $f g(x)$

13
SC2 for 11

Q8.

$$
\begin{aligned}
& 2 y^{3}-10 y^{2}+4 y-3 y^{2}+15 y-6 \\
& \text { Must have at least five terms with at least four correct }
\end{aligned}
$$

$$
2 y^{3}-10 y^{2}+4 y-3 y^{2}+15 y-6
$$

ft from M1 AO

$$
2 y^{3}-13 y^{2}+19 y-6
$$

Q9.
Alternative method 1

$$
\begin{aligned}
& 4 x^{2}+6 x y+6 x y+9 y^{y} \\
& \quad \text { oe Allow one error } \\
& \quad \text { Implied by } 4 x 2+12 x y+\ldots \text { or } \ldots x y+2 y 2
\end{aligned}
$$

$$
\begin{gathered}
4 x^{2}+6 x y+6 x y+9 y^{₹} \text { or } 4 \bar{x}+12 x y+9 y^{2} \\
\text { oe Fully correct }
\end{gathered}
$$

```
\(4 x 3+622+6 x^{2}+9 x y 2\)
or \(4 x 3+x \not 22+8 y^{2}\)
or \(-162-24 x y-24 x y-36 y\)
or - 162-48 xy-36y2
    oe
    ft correct multiplication of their expansion by \(x\) or by -4 if
    their expansion for first M1 has at least 3 terms after
    simplification
```

$4 x^{3}+12 x 2 y+9 x y^{2}-16 x-48 x y-36 y$
ft M1A0M1 if their first expansion has at least 3 terms after simplification

Alternative method 2
$2 x^{2}+3 x y-8 x-18$
oe Allow one error
eg $2 x 2+3 x y-8 x+y 2$
$2 x^{2}+3 x y-8 x-12$
oe Fully correct
$4 x^{3}+6 x 2 y-16 x-24 x y$ or (+) $6 x 2 y+9 x y^{2}-24 x y-36 y$
oe ft correct multiplication of their expansion by $2 x$ or by $3 y$ if their expansion for first M1 has at least 3 terms after simplification
$4 x^{3}+12 x 2 y+9 x y^{2}-16 x-48 x y-36 y$
ft M1A0M1 if their first expansion has at least 3 terms after simplification

Additional Guidance
Terms and variables may be in any order for M and A marks
For M1 A1 M1 dep terms may be seen in a grid
$4 \times 3-16 x 2+9 x y 2-36 y 2$ from $(x-4)(4 x 2+9 y 2)$

In alt 2, condone ($2 y 2+3 x y-8 x-12 y$) 2 for M1A1 only
One error can be one incorrect term or a missing or extra term

Do not ignore fw when awarding the final A mark
If $(x-4)(2 x+3 y)$ and $(2 x+3 y) 2$ are both attempted and no answer is given, mark b and award the better mark

Q10.

$$
a=4 \text { or }(3 x-1)(4 x+b)
$$

$3 a x 2+3 b x-a x-b$
or $3 b-a=-19$
or $12 \times 2+3 b x-4 x-b$
$3 b x-4 x=$
-19x or $3 b-4$
бr $-30=-15$ or $b=-5$
or $(3 x-1)(4 x-5)$
This mark implies B1M2
$a=4$ and $\quad b=-5$ and $\quad c=5$

Additional Guidance
$3 a x^{2}+3 b x-1 a x-b$ or $3 a x^{2}+3 b x-a x-1 b$

Condone $3 x 2$ aand $3 x b$ and $x a$

Q11.
$(3 a-b)(3 a+b)$

$$
\begin{aligned}
& \text { B1 }(3 a-b)(3 a-b) \text { or }(a+b)(3+b) \\
& \text { or }(3 a-b) 2 \text { or }(3 a+b) 2 \\
& \text { or }(9 a+b)(a-b) \text { or }(a-b)(a) b
\end{aligned}
$$

Additional Guidance
$(3 a-b) \times(3 a+b)$

Q12.
(a) $3 y(3 y-2)$ or $-3 y(2-3 y$

$$
\begin{aligned}
& \text { B1 } 3(3 y 3-2 y) \text { or } y(9 y 2-6) \\
& \text { or }-3(2 y-3 y 3) \text { or }-y(6-9 y 2)
\end{aligned}
$$

Additional Guidance
$3 y(3 y 2-2)$ or $-3 y(2-3 y 2)$ followed by incorrect further work eg $3 y(3 y 2-2)=3 y 2(3 y-2)$
$3 y\left(3 y^{2}-2\right)=3 y(\sqrt{3} y+2)(\sqrt{3} y-2)$
$3 y(3 y-2)=9 \xi-6 y($ checking $)$
$3 y \times(3 y-2)$
$3 \times(3 \sharp-2 y)$
$y 3\left(3 y^{2}-2\right)$
(b) $(3 x-1)(x-7)$ or $(1-3) \times 7-x)$

$$
B 1(3 x)(a) x \quad b
$$

$$
\text { where } a b=7 \text { or } a+3 b=-22
$$

$$
\text { or }(a-3) x-x
$$

$$
\text { where } a b=7 \text { or } a+3 b=22
$$

Additional Guidance
$(3 x+1)(x+7)$
$(3 x-1)(x-7)$
$(3 x-4)(x-6)$
$(7-3 x)(1-x)$
$(10-3 x)(4-x)$
$(3 x-1) \times(x-7)$

Ignore any 'solutions' seen
eg $(3 x-1)(x-7)$ in working $\frac{1}{w}$ ithd 7 on answer line

Q13.

$$
\begin{array}{r}
(t+4)\left(t^{2}+4 t+4 t+16\right) \\
\text { oe Must be correct }
\end{array}
$$

$$
\begin{aligned}
t^{3}+4 t 2+4 t 2+ & 16 t+4 t 2+16 t+16 t+64 \\
& \text { ft From their }(t+4)(t+4 t+4 t+16) \\
& \text { oe Must have at least } 4 \text { terms correct } \\
& M 2 t 3+3 t 2(4)+3 t(4) 2+43 \text { oe }
\end{aligned}
$$

$$
t^{3}+12 t 2+48 t+64
$$

Q14.
Alternative method 1 - completing the square
$\left(x+\frac{1}{2}\right)^{2}+\ldots$
$\left(x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1$
or $\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}+1$
or $\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
oe
$\left(x+\frac{1}{2}\right)^{2} \geq 0$ and $\frac{3}{4}>0$ and always positive oe

Alternative method 2 - real roots
$\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times 1}}{2 \times 1}$
or a correct sketch showing a quadratic curve with turning poiaxtsabove the x oe

States no values ouxis

States no values oraxis and (minimum value $=$) $\frac{3}{4}$

Alternative method 3-Calculus
$2 x+1=0$
$x=-\frac{1}{2}$
$($ minimum value $\Rightarrow) \frac{3}{4}$

Alternative method 4 - Explanation method
If $x \geq 0, x 2 \geq 0$ and $x \geq 0(1>0)$ so $x 2+x+1>0$
and If $-1<x<0 x 2>0$ gmadl >0 so $x 2+x+1>0$
and If $x \leq-1 x 2>x$ and $2>+0$ sox $2+x+1>0$
Accept $x>0$ for $x \geq 0$
B2 for two correct statements
B1 for one correct statement

Additional Guidance

Calculating pairs of coordinates alone

Q15.
(a) $(x-5) 2+1$
$x 2-5 x-5 x+25+1$
$=x 2-10 x+26$
(b) $x^{2}+1-5$ or $x^{2}-4$
$x^{2}-10 x+26=$ theif (x)
$-10 x=-4-26$
or $-10 x=-30$
or $10 x=30$
oe
M1
3

Q16.
$8 \times \frac{1}{2} n(n+1) \quad(+1)$
$4 n(n+1)(+1)$
or $4 n 2+4 n(+1)$
$(2 n+1) 2$ or $(2 n+1)(2 n+1)$
$(2 n+1) 2$ is a square number
oe
or $2 n+1$ is odd
and odd \times odd $=$ odd
odd $^{2}=$ odd
or multiple of 4 is even
and even +1 = odd
or
$n(n+1)$ is odd \times even or even \times odd
so $n(n+1)$ is even
or $4(n 2+n)$ is even
and even +1 = odd
an even $\times 4=$ even
d even $+1=$ odd
an
or $4 n 2$ is even $\begin{aligned} & \text { nnd } \\ & 4 n\end{aligned}$ is even
and even $+1=$ odd
$(2 n+1) 2$ is a square number
and
or $2 n+1$ is odd
and odd \times odd $=$ odd
Strand (ii)
Both parts of the proof required.
or multiple of 4 is even
and even +1 = odd
or
$n(n+1)$ is odd \times even or even \times odd
so $n(n+1)$ is even
or $4(n 2+n)$ is even
and even +1 = odd
an even $\times 4=$ even
d even $+1=$ odd
an
or $4 n 2$ is even $ब$ nd $4 n$ is even
and even +1 = odd
SC1 for $8 \times S=$ even
and even $+1=$ odd

Q17.
$5 f(x)=4 x-3$ or $5 f(x)+3 x=4$
or $5 y=4 x-3$ or $5 y+3 x=4$
or $5 x=4 y-3$ or $5 x+3 y=4$
Accept any letter used for y
$\frac{5 f(x)+3}{4}(=x)$
$\operatorname{or}_{\frac{5 y+3}{4}}(=x)$
$\frac{5 x+3}{4}$
Condone y (or any other letter)

Q18.
Full explanation stating
one of $a+b$ or $a-b$ must be 1
and
$a+b$ cannot be 1
and
$a-b$ must be 1
B1 partial explanation ie $a+b$ or $a-b$ must be 1
or

$$
a+b \text { cannot be } 1
$$

or
$a-b$ must be 1

Q19.
(a) $3(x+2)(x-2)$

B1 for 3(x2 -
4) or $(3 x+6)(x$

- 2) or $(x+2)$
(b) $(5 x+a y)\left(\begin{array}{l}(3 x-b y)\end{array}\right.$
where $a b= \pm 12$ or $a+5 b= \pm 4$
$(5 x \pm 6 y)(x \pm 2 y)$
for correcty terms in correct brackets, but with a sign error
$(5 x-6 y)(x+2 y)$
(b) Their $(m+2 p)=0$ or

Their $(m-2 p)=0$

$$
\text { oe e.g. } m=-2 p \text { or } m=2 p
$$

May substitute for p at this stage
M1
-30 and 30

Alternative method
$5 m^{7}-20 \times 15 \times 15=0$

$$
\text { oe e.g. } 5 m 2=4500
$$

-30 and 30

Q21.

Q22.
$5 n 2-5 n+3 n-3$
oe 4 terms with 3 correct including a term in n
M1
$5 n^{2}-5 n+3 n-3$
Fully correct
oe e.g. $5 n 2-2 n-3$
$6 n^{2}-3$
$3(2 \mathfrak{q}-1)$ or states that both terms are multiples of 3 oe

Q23.
$(3 x+a)(x+b)$
where $a b=8$ or $a+3 b=14$
or
$3 x(x+4)+2(x+4)$
or
$x(3 x+2)+4(3 x+2)$
$(3 x+2)(x+4)$
oe

Q24.
Alternative method 1
$(w=) x-2$ and $(y) x+2$
Allow ($x=$) w +2 and (*) $y-2$
$(x-2)(x+2)+4$
or
$w y=(x-2)(x+2)$ ancy $=x^{2}-4$

```
\(=x 2-4+4\)
and \(x 2-4+4 x z\)
```

All steps must be seen
SC1 correct numerical example with all steps shown

Alternative method 2
$(x=) w+2$ and $(\forall) w+4$
Allow ($(*) \quad w+2$ and $(\#) y-2$
$(w)(w+4)+4$
$=w 2+4 w+4$
and $w 2+4 w+4(F+2)^{2}$
and $(w+2) 2=x 2$
All steps must be seen
SC1 correct numerical example with all steps shown

Alternative method 3
$(x=) y-2$ and $(w=) y-4$

$$
\text { Allow (} x=\text {) } w+2 \text { and (*) } y-2
$$

$(y)(y-4)+4$
$=y 2-4 y+4$
and $y 2-4 y+4=-(\underline{2})^{2}$
and $(y-2) 2=x 2$
All steps must be seen
SC1 correct numerical example with all steps shown

Additional Guidance
$x=3, w=1, y=5$ and $1 \times 5+4=9$
$x=3, w=1, y=5$ and $1 \times 5+4=9$ and $9=32$
$1 \times 5+4=9$ and $9=32$

