Q1.
(a) $12 x+18 x-2 x-3$

Must have four terms, one in $\times 2,2$ in x and a constant term. 3 terms correct
Terms may be in box method but must have correct signs
$12 x+16 x-3$

Additional Guidance
$8 x 2+18 x-2 x-3$
$12 x 2+18 x+2 x-3$
$8 x 2+18 x+2 x-3$
$12 x+18 x-2 x-3$

	$6 x$	-1
$2 x$	$12 x 2$	$-2 x$
3	$18 x$	-3

	$6 x$	-1
$2 x$	$12 x 2$	$2 x$
3	$18 x$	3

(b) Alternative method 1

$$
\begin{aligned}
& (a x \pm c)(b x \pm d \\
& \quad a b=4 \text { and } c d= \pm 3
\end{aligned}
$$

$(4 x-3)(x+1)$
$\frac{3}{4}$ and -1
ft their brackets if M1 awarded

Alternative method 2
$\frac{-1 \pm \sqrt{1^{2}-4 \times 4 \times-3}}{2 \times 4}$
Allow one error from wrong sign for $-b$, wrong signs for -4ac, b2 as - 1
Do not accept wrong formula, ie + not $\pm, 2$ not $2 a$ or only dividing root by $2 a$
$\frac{-1 \pm \sqrt{49}}{8}$
$\frac{3}{4}$ and -1
oe ft on wrong sign for -b only $\frac{3}{4}$ and -

Alternative method 3
$\left(x+\frac{1}{8}\right)^{2}=\frac{49}{64}$
$x= \pm \sqrt{\frac{49}{64}}-\frac{1}{8}$
$\frac{3}{4}$ and -1
oe

Alternative method 4
Writes $x 2+x-12$ anrotes

$$
\begin{gathered}
\left(x \pm \frac{a}{4}\right)\left(x \pm \frac{b}{4}\right) \text { where } a b=-12 \\
(4 x \pm 4)(4 x \pm 3)
\end{gathered}
$$

$$
\begin{aligned}
& \left(x+\frac{4}{4}\right)\left(x-\frac{3}{4}\right) \\
& \text { oe eg }(4 x+4)(4 x-3)
\end{aligned}
$$

$$
\frac{3}{4} \text { and }-1
$$

oe ft their brackets if M1 awarded

Additional Guidance

$$
\begin{aligned}
& (2 x-1)(2 x+3)^{\frac{1}{2}} \text { and }-1 \frac{1}{2} \\
& \frac{1 \pm \sqrt{1^{2}-4 \times 4 \times-3}}{2 \times 4},-\frac{3}{4} \text { and } 1
\end{aligned}
$$

$\mathrm{M} 1, \mathrm{~A} 0, \mathrm{~A} 1 \mathrm{ft}$
$\mathrm{M} 1, \mathrm{A0}, \mathrm{~A} 1 \mathrm{ft}$
$(4 x+3)(x-1),-\frac{3}{4}$ and -1
$\mathrm{M} 1, \mathrm{A0}, \mathrm{~A} 1 \mathrm{ft}$

$$
x^{2}+x-12
$$

$\left(x+\frac{2}{4}\right)\left(x-\frac{6}{4}\right)$
$1 \frac{1}{2}$ and $-\frac{1}{2}$

Q2.
$(-3,5)$

Q3.
use of $(x-4)$

$$
(x-4) 2-16(+20)
$$

$$
(x-4) 2-16+20=(x-4) 2+4
$$

Strand (ii)
Complete and correct algebraic explanation

Alternative method 1
use of $(x-4)$

$$
=x^{2}-8 x+16
$$

$$
(x-4) 2+4=x-8 x+20
$$

Strand (ii)
Complete and correct algebraic explanation

Alternative method 2
$x^{2}-a x-a x+a^{2}(+a)$
$a=4$

Also $42+4=20$
Strand (ii)
Complete and correct algebraic explanation
(b) explains that a square is always positive (or zero) oe
and a positive number is added so is always positiveoe

Q4.
(a) Alternative method 1
$(x-5)^{2}$
$(x-5) 2-13$ or $a=5$ and $b=-13$

Alternative method 2

$$
x 2-2 a x+a 2+b=x 2-10 x+16
$$

or $2 a=10$ or $a=5$ or $b=-13$
$(x-5) 2-13$ or $a=5$ and $b=-13$
(b) 2

Q5.
Alternative method 1
$x(x+2) o r^{x_{2}}+2 x$
or
$2 x \times 4$ or 8
or
$4(x+2)$ or $4 x+8$
$x(x+2)$ or $x 2+2$
and
$2 x \times 4$ or $8 x$
and
$4(x+2)$ or $4 x+8$

$$
\text { eg } \frac{x(x+2)-2 x \times 4}{4(x+2)}
$$

$x(x+2)-2 x \times 4=4(\times 2)$ oe equation with fractions eliminated dep on M2
$x^{2}-10 x-8(=0)$ oe 3-term quadratic equation with terms collected
$\frac{--10 \pm \sqrt{(-10)^{2}-4 \times 1 \times-8}}{2 \times 1}$
or $\frac{10 \pm \sqrt{100+32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$
or $5 \pm \sqrt{5^{2}+8}$ or $5 \pm \sqrt{33}$
or
[10.744, 10.745] and [-0.745, -0.744]
oe
Correct for their 3-term quadratic
Allow correct factorisation of their 3-term quadratic
10.74 and -0.74
with $x 2-10 x-8(=0)$ oe seen
Must both be to 2 decimal places

Alternative method 2 (from $\frac{x}{4}-1=\frac{2 x}{x+2}$)
$x(x+2)$ or $x 2+2 x$
or
$(x+2)+2 x$ or $3 x+2$
or
$12 x+8$
$\frac{x(x+2)}{4}$ or $\frac{x^{2}+2 x}{4}$
and
$\frac{x+2+2 x}{x+2}$ or $\frac{3 x+2}{x+2}$
$x(x+2)=4(x+2+2 x)$
or
$x(x+2)=4(3 x+2)$
oe equation with fractions eliminated dep on M2
$x^{2}-10 x-8(=0)$
oe 3-term quadratic equation with terms collected
$\frac{--10 \pm \sqrt{(-10)^{2}-4 \times 1 \times-8}}{2 \times 1}$
or $\frac{10 \pm \sqrt{100+32}}{2}$ or $\frac{10 \pm \sqrt{132}}{2}$
or $5 \pm \sqrt{5^{2}+8}$ or $5 \pm \sqrt{33}$
or
[10.744, 10.745] and [-0.745, -0.744]
oe
Correct for their 3-term quadratic
Allow correct factorisation of their 3-term quadratic
10.74 and -0.74
with $x 2-10 x-8(=0)$ oe seen
Must both be to 2 decimal places

Alternative method 3 (from $\frac{x}{4}-1=\frac{2 x}{x+2}$)
$\frac{x-4}{4}$
$(x-4)(x+2) 0 x^{2}-4 x+2 x-8$
or $x 2-2 x-8$
and
$2 x \times 4$ or $8 x$

$$
\begin{aligned}
& (x-4)(x+2)=2 x \times 4 \\
& \text { or } \\
& x 2-4 x+2 x-8=8 x \\
& \\
& \begin{array}{l}
\text { oe equation with fractions eliminated } \\
\text { dep on } M 2
\end{array}
\end{aligned}
$$

```
\(x^{2}-10 x-8(=0)\)
    oe 3-term quadratic equation with terms collected
```

$$
\frac{--10 \pm \sqrt{(-10)^{2}-4 \times 1 \times-8}}{2 \times 1}
$$

$$
\text { or } \frac{10 \pm \sqrt{100+32}}{2} \text { or } \frac{10 \pm \sqrt{132}}{2}
$$

$$
\text { or } 5 \pm \sqrt{5^{2}+8} \text { or } 5 \pm \sqrt{33}
$$

or
[10.744, 10.745] and [-0.745, -0.744]
oe
Correct for their 3-term quadratic
Allow correct factorisation of their 3-term quadratic

Additional Guidance
10.74 and -0.74 from T \& I or with no working
10.74 or -0.74 from T \& I or with no working

In quadratic formula, do not allow -102 for (-10)2 unless recovered

Q6.

$$
\begin{aligned}
& \frac{x-1}{(x-2)(x-1)}-\frac{x-2}{(x-2)(x-1)} \\
& \text { or } x-1-(x-2) \\
& \text { or } 2(x-2)(x-1) \\
& \text { or } x 2-2 x-x+2
\end{aligned}
$$

```
their \([x-1-(x-2)]=2(x 1)(x-2)\)
or \(x-1-x+2\)
```

or $2(x-2 x-x+2)$
oe
$2 x^{2}-6 x+3(=0)$
oe Must be three terms
$\frac{--6 \pm \sqrt{(-6)^{2}-(4 \times 2 \times 3)}}{2 \times 2}$
or $\frac{6 \pm \sqrt{12}}{4}$
oe
Allow one error, ft their quadratic
$\frac{--6 \pm \sqrt{(-6)^{2}-(4 \times 2 \times 3)}}{2 \times 2}$
or $\frac{6 \pm \sqrt{12}}{4}$
ft their quadratic, fully correct
oe
2.366(...) and 0.633(...)
2.37 and 0.63

SC2 for one correct answer to $2 d p$
SC1 for one correct answer to 3 dp or more

Additional Guidance

T\&l with two correct answers to 2 dp scores full marks T\&l with two correct answers to 3 dp or more loses final A mark ft is from their quadratic (must have three terms) One error is an incorrect substitution in one position or a short divisor line A negative discriminant can score M1A1ftAOft for an attempt at a solution

Q7.
$x 2-c x-c x+c 2$
or $x 2-2 c x+c 2$
or $a=c 2$
or $12=2 c$
or $12 x=2 c x$
or $-12 x=-2 c x$
$c=6$
$a=36$
ft their c2

Alternative Method
$(x-6) 2+a-36$
$c=6$
$a=36$
ft their c2

Q8.
(a) Alternative method 1
$(x+3) 2+\ldots$ or $\neq 13$
$(x+3) 2+1$
Accept $a=3$ and $b=1$

Alternative method 2
$2 a=6$ and $^{2}+b=10$
$(x+3) 2+1$
Accept $a=3$ and $b=1$
(b) $(-3,1)$
oe
$f t$ their a and their b

Q9.

$$
\begin{aligned}
& x 2+a x+a x+a 2(-7) \\
& \text { or } x 2+2 a x+a 2(-7) \\
& \text { or } 2 a x=10 x \\
& \text { or } 2 a=10 \\
& \text { or } a=5
\end{aligned}
$$

$$
\text { or } a^{2}-7=b
$$

or $(x+5) 2$
oe
$a=5$ and $b=18$

Additional Guidance
$(x+5) 2-7=x^{2}+10 x+18$
$a=7$ and $b=18$

Q10.
(a) $(x-5) 2$ or $2 a=10$ aor 5
or $a 2+b=29$
$(x-5) 2+4$
or $a=5$ and $=4$
(b) Alternative method 1
$(x-3) 2+5$
$x 2-3 x-3 x+9+5$
or $x 2-6 x+14$
Correct expansion of their (x) $2+n$
$c=-6$ and $d=14$

Alternative method 2

$$
\begin{aligned}
& \left(x+\frac{c}{2}\right)^{2}+d--\frac{c^{2}}{4} \\
& \frac{c}{2}=-3 \text { and } d-\quad-\frac{c^{2}}{4}=5
\end{aligned}
$$

Equates coefficients for theif $b \times 2+b$
$h c=-6$ and $d=14$

Additional Guidance

$9+3 c+d=5$

Q11.

$$
\begin{aligned}
& 6(2 x+5)+1(* 3) \text { or } 3(* 3)(2 x+5) \\
& \text { oe } \\
& \text { May be seen as part of a fraction or fractions with } \\
& \text { denominator }(x+3)(2 x+5)
\end{aligned}
$$

$$
\begin{gathered}
6(2 x+5)+1(* 3)=3(x+3)(2 x+5) \\
o e
\end{gathered}
$$

$6 x 2+20 x+12(=0)$
or
$3 x 2+10 x+6(=0)$
Simplifying the expression to three terms
$\frac{-20 \pm \sqrt{20^{2}-4 \times 6 \times 12}}{2 \times 6}$
or $\frac{-10 \pm \sqrt{10^{2}-4 \times 3 \times 6}}{2 \times 3}$
oe
Allow one error
-2.548... or -0.784 ...
Strictly ft their quadratic
$\frac{-20 \pm \sqrt{20^{2}-4 \times 6 \times 12}}{2 \times 6}$
or $\frac{-10 \pm \sqrt{10^{2}-4 \times 3 \times 6}}{2 \times 3}$
oe
fully correct
-0.78 and -2.55

Additional Guidance
One correct solution to 2 or more dp implies 4 marks

Two correct solutions to more than 2 dp implies 5 marks
$3 x 2+10 x=-6$
ft their quadratic for the 4th and 5th marks
If no real roots M1A1ft can still be awarded
If quadratic factorises, must see correct factors for M1 and correct solutions for A1ft
If quadratic does not factorise, attempt to factorise scores M0
"Their quadratic" must be in the form $a x 2+b x+c(=0)$ or equivalent, no credit for solving a quadratic embedded within fractions etc

Q12.
Alternative method 1

$$
\begin{aligned}
& 5 \times 2-10 x-4(=0) \\
& \text { or }-5 x 2+10 x+4(=0) \\
& \\
& \text { If no rearrangement seen implied by } \\
& \\
& \\
& \\
& \\
& \\
& \text { or } a=5, b=-10, c=-4=10, c=4 \\
& \\
& \text { seen or used correctly }
\end{aligned}
$$

$\frac{--10 \pm \sqrt{(-10)^{2}-4 \times 5 \times-4}}{2 \times 5}$
ft their 3-term quadratic (equation) seen
Allow one sign error
Allow 102 for (-10)2
(do not count as a sign error)
Allow recovery of invisible brackets
Conceptual error (omission of square root, incomplete
square root symbol, \pm not included, short fraction line) is MO
unless recovered
$\frac{--10 \pm \sqrt{(-10)^{2}-4 \times 5 \times-4}}{2 \times 5}$
or $\frac{10 \pm \sqrt{100+80}}{10}$
or $\frac{10 \pm \sqrt{180}}{10}$ or $\frac{10 \pm 6 \sqrt{5}}{10}$
or 2.341 (...) or 2.342
and -0.341 (...) or -0.342
Fully correct substitution
ft their 3-term quadratic (equation) seen
oe eg $\frac{5 \pm 3 \sqrt{5}}{5}$
Allow 102 for (-10)2
Allow recovery of invisible brackets
Two correct solutions > 2 dp for their 3-term quadratic equation
2.34 and -0.34
ft BOM1A1ft
ft answers must be rounded to $2 d p$

Alternative method 2
$5\left(x^{2}-2 x-\frac{4}{5}\right)(=0)$
or $x^{2}-2 x-\frac{4}{5}(=0)$
or $5\left(x^{2}-2 x\right)=4$ or $x^{2}-2 x=\frac{4}{5}$
May be implied
$5\left[(x-1)^{2}-1^{2}-\frac{4}{5}\right](=0)$
or $(x-1)^{2}-1^{2}-\frac{4}{5}(=0)$
or $5[(a c-1) 2-12]=4$
or $(x-1)^{2}-1^{2}=\frac{4}{5}$
ft their 3-term quadratic (equation) seen
Allow one sign error but $(x-1) 2$ must be correct
$1 \pm \sqrt{1^{2}+\frac{4}{5}}$
or 2.341 (...) or 2.342
and $-0.341(\ldots)$ or -0.342
Fully correct
ft their 3-term quadratic (equation) seen
oe eg $\frac{5 \pm 3 \sqrt{5}}{5}$
Two correct solutions > 2 dp for
their 3-term quadratic equation seen
2.34 and -0.34
ft B0M1A1ft
ft answers must be rounded to $2 d p$

Do not count a sign error in a (or b) as two sign errors
eg If a should be -5 but $a=5$ is used in both $4 a c$ and $2 a$, only count as one sign er
Final A1 mark can be awarded if both answers seen in working but only one is written on answer line
$5 x 2+10 x-4(=0)$ seen with solutions -2.34 and 0.34
(no incorrect method seen)
B0M1A1ftA1ft
$5 \times 2-10 x+4(=0)$ seen with solutions 0.55 and 1.45
(no incorrect method seen)
B0M1A1ftA1ft
$5 \times 2+10 x+4(=0)$ seen with solutions -0.55 and -1.45
(no incorrect method seen)

Note that the pairs of solutions seen in the three rows above can come from incorrect method so will not always score 3 marks
2.34 and -0.34 with no working or from T \& I

4 marks
2.34 or -0.34 with no working or from T \& I
2.3 and/or -0.3 with no working or from $T \& 1$

