M1.
(a) $y=3 x+2$
(b) $(P Q=) 3-0$ or 3

Accept if seen on LHS of ratio ( $P Q$ ) or as denominator in a gradient calculation for $P R$
$(9,14)$ or $x=9$ or $(R S=) 9-4$ or 5
$3: 5$

M2.
$y=3 x-2$

$$
\begin{array}{cc}
\text { oe } & \text { eg } \frac{y}{3}=x-\frac{2}{3} \\
\text { B2 } & y=-3 x-2 \\
\text { or } & 3 x-2 \\
\text { or } & y=3 x+c \\
\text { or } & \text { gradient }=\frac{6}{2} \text { or } 3 \\
\text { and intercept }=-2 \\
\text { B1 } y=m x-2 \\
\text { or } & y=-3 x+c \\
\text { or } & -3 x-2 \\
\text { or } & 3 x+c \\
\text { or } & \text { gradient }=\frac{6}{2} \text { or } 3 \\
\text { or } & \text { intercept }=-2
\end{array}
$$

M3.
$10=-2(-3)+\propto c=4$

$$
y-10=-2(x(-3)) \text { or } y=-2 x+c
$$

$y=-2 x+4$

M4.

## Alternative method 1

$A(6,0)$ or $x=6($ for $A)$
May be on diagram or be implied
$\frac{1}{2} \times$ their $6 \times y=24$
$y=8$
Only ft BO M1
their $8=12-2 x$
$x=2$

> ft their y

SC2 Answer $(8,2)$ with no valid working
$\operatorname{SC1} B(0,12)$ or $y=12($ for $B)$

## Alternative method 2

$A(6,0)$ or $x=6($ for $A)$
May be on diagram or be implied
$B(0,12)$ or $y=12($ for $B)$
and
(area $O A B=)^{\frac{1}{2}} \times$ their $6 \times 12$ or 36
and
$\frac{1}{2} \times 12 \times x=$ their $36-24$

$$
x=2
$$

> Only ft BO M1
$y=12-2 \times$ their 2
$y=8$

> ft their y

SC2 Answer $(8,2)$ with no valid working
SC1 B $(0,12)$ or $y=12($ for $B)$

## Alternative method 3

$A(6,0)$ or $x=6($ for $A)$
May be on diagram or be implied
$\frac{1}{2} \times$ their $6 \times y=24$
$y=8$
Only ft BO M1
$B(0,12)$ or $y=12($ for $B)$
and
(area $O A B=)^{\frac{1}{2}} \times$ their $6 \times 12$ or 36
and
$\frac{1}{2} \times 12 \times x=$ their $36-24$
$x=2$
Only ft B0 with 2nd M1 gained
SC2 Answer $(8,2)$ with no valid working
SC1 B $(0,12)$ or $y=12($ for $B)$

## Alternative method 4

$A(6,0)$ or $x=6$ (for $A$ )
May be on diagram or be implied
$B(0,12)$ or $y=12($ for $B)$
and
(area $O A B=$ ) $\frac{1}{2} \times$ their $6 \times 12$ or 36
and
$\frac{1}{2} \times 12 \times x=$ their $36-24$

$$
x=2
$$

Only ft BO M1

```
\(\frac{1}{2} \times\) their \(6 \times y=24\)
\(y=8\)
```

    Only ft B0 with 2nd M1 gained
    SC2 Answer \((8,2)\) with no valid working
    SC1 B \((0,12)\) or \(y=12(\) for \(B)\)
    
## Alternative method 5

$A(6,0)$ or $x=6($ for $A)$
May be on diagram or be implied
$B(0,12)$ or $y=12($ for $B)$
and
(area $O A B=) \frac{1}{2} \times$ their $6 \times 12$ or 36
and
$\frac{24}{\text { their } 36} \times 12$
$y=8$
Only ft BO M1
$B(0,12)$ or $y=12($ for $B)$
and
(area $O A B=)^{\frac{1}{2}} \times$ their $6 \times 12$ or 36
and
$\frac{\text { their } 36-24}{\text { their } 36} \times$ their 6
$x=2$
Only ft B0 with 2nd M1 gained
SC2 Answer $(8,2)$ with no valid working
SC1 B $(0,12)$ or $y=12($ for $B)$

M5.
$m=5$

$$
\begin{aligned}
& 3=5 \times 4+\operatorname{cor} 3=20 \boldsymbol{\epsilon} \\
& y-3=5 x-4) \text { or } y-3=5 x-20 \\
& \text { oe }
\end{aligned}
$$

$$
c=-17
$$

SC1 for $y=-0.2 x+3.8$ (using the perpendicular gradient)

M6.
Scale on the $y$-axis identified correctly
e.g. Intercept of line $A$ with $y$-axis identified as 2 oe Must be unambiguous identification

Scale on the $x$-axis identified correctly
e.g. Intercept of line $A$ with $x$-axis identified as 2 oe Must be unambiguous identification

Correct attempt at gradient
e.g. $\frac{\text { their } 5}{\text { their } 6}$
ft their scales

$$
\begin{array}{ll}
y=\frac{5}{6} x-5 \text { or } & 6 y=5 x-30 \\
& \text { ft BO B1 M1 or B1 BO M1 } \\
& \text { oe } \frac{5}{6} x-5 \text { is B2 M1 AO }
\end{array}
$$

M7.(a) $\quad 4 n+2$
(b) $(4 n$, their $4 n+2)$
ft their (a)
(c) $y=x+2$
oe all equations

$$
B 1 y=m x+c \text { with } m=1 \text { or } c=2
$$

or
$4 n$ circled in (a) and $y=x$
or
$6 n$ circled in (a) and $y=\frac{3 x}{2}$
or
$6 n+2$ circled in (a) and $\ddagger \frac{3 x}{2}+2$

M8.(a) C\&O frequency $=5$

Three tally marks in BBQ
(b) Key 1 circle represents 2 people oe

Half circle represents 1 person
One and a half circles represents 3 people
and
2.5 circles in $\mathrm{C} \& \mathrm{O}$

B1 6 circles in Plain or 2.5 circles in C\&O ft their fully completed key
Only award B2ft if BBQ row is also correct for their key
B1ft one row matching their key

M9.Gradient of $A C=-2$ or $y=-2 x+4$

$$
0=\text { their }-2 \times 1+c
$$

$$
c=2 \text { and } y=-2 x+2
$$

## Alternative method 1

Line drawn parallel to $A C$ passing through $(0,2)$ and $B$

Calculating or stating gradient of both lines as -2
eg $y=-2 x+2$ and $y=-2 x+4$

Reference to intercept being 2 and statingy+2

## Alternative method 2

Line drawn parallel to $A C$ passing through $(0,2)$ and $B$

Intercepts are $(0,2)$ and $(1,0)$ so equationtésceppt) $\times x+(x$ intercept $) \times y=(y$ intercept $) \times(x$ intercept $)$

Therefore (2) $\times x+(1) \times y=(2)(1) \rightarrow 2 x+y=2$

M10. $\quad 3 y+12=0$
Attempt to find $y$-intercept
or the value of $y$ when $x=0$
or $y=\frac{-4 x}{3}-4$

$$
y=-4
$$

May be seen on diagram

$$
\begin{aligned}
& \text { Gradient }= \frac{4}{6}(= \\
&\left.=\frac{2}{3}\right) \text { or } \frac{0-(-4)}{6-0} \\
& \text { oe ft their }-4 \\
& \text { Gradient must be positive }
\end{aligned}
$$

$$
y=\frac{2}{3} x-4
$$

oe
SC3 for $y=\frac{-2}{3} x-4$

M11. $\quad A=(3,0)$

$$
B=(0,6)
$$

$$
C=(-3,12)
$$

$$
\text { ft from their } A \text { and } B
$$

$$
C=(-3,12) \text { seen scores } B 3
$$

Gradient of $D C=\frac{12-0}{-3-(-7)}(=3)$
or
Uses $y=m x t$ and substitutes the coordinates of $D$ and their $C$
oe
$0=7 m+c$ and $12=-3 m+c$
ft their $C$
$y=3 x+21$
oe

M12.B and D
B1 for 1 correct (and 1 incorrect)
or 2 correct and 1 incorrect

M13.Attempt to work out gradient
e.g. $3 \div 6$ seen oe

Right-angled triangle drawn on diagram

$$
\begin{aligned}
m=\frac{1}{2} \text { or } c=4 & \text { seen or implied } \\
& \text { e.g } \frac{1}{2} x+4 \\
& \text { oe } \\
& \text { Gradient }=\frac{1}{2} \text { or Intercept }=4
\end{aligned}
$$

$y=\frac{1}{2} x+4$
oe

M14. $7+6$ or $1+12$
oe

13

$$
B=(4,13) \text { or } C=(0,13) \text { seen is M1 A1 }
$$

$$
\begin{array}{ll}
y=3 x+13 & \\
& \text { SC1 } y=3 x+c \\
& c \neq 0 \text { and } c>0 \text { but not } c=l \\
& C=3 x+c c \neq 13 \text { scores no marks } \\
& \text { SC2 for } C=3 x+13
\end{array}
$$

