M1.

Alternative method 1

$P(1,3)$ or $y=3$ or grad $O P=3$
$\operatorname{grad} P Q=-\frac{1}{\text { their } 3}$ or $-\frac{1}{3}$
$y=\left(\right.$ their $\left.-\frac{1}{3}\right) x+c$
and substitutes (1, their 3)
or
y-their $3=\left(\right.$ their $\left.-\frac{1}{3}\right)(x-1)$
oe
$\frac{\text { their } 3}{x-1}$ or $-\frac{\text { their } 3}{x-1}$
M1dep

Substitutes $=10$ in their equation

$$
-\frac{\text { their } 3}{x-1}=\text { their }-\frac{1}{3}
$$

$(10,0)$

Alternative method 2

$P(1,3)$ or $y=3$ or grad $O P=3$
$\frac{\text { their } 3}{1}=\frac{Q N}{\text { their } 3}$
their $3 \times$ their 3 or 9
$\tan P O N=\frac{\text { their } 3}{1}$
N is on the x-axis $P N$ is perpendicular to thexs
$(10,0)$

M2.
(a) Circle drawn, centre $(0,0)$, radius 4
(b) $x^{2}+y^{2}=160 x^{2}+y^{2}=4^{2}$
oe

