Mark schemes

Q1.
$$2x + \frac{1}{x}$$
 B1 [1]

(a) $x^2 + 5x - 5x - 25$ Must see full correct expansion (b) (3x + p)(x + q) wher $pq = \pm 20$ (3x - 4)(x - 5) in numerator 3x - 4 $\frac{3x - 4}{x + 5}$ Do not ignore further working ie max 2 marks if any further working

[4]

A1

Q3.

$$\frac{n(n-1)+n(n+1)}{2}$$
This mark is for combining fractions or if fractions dealt with separately, for combining n2 terms correctly
$$\frac{n^2 - n + n^2 + n}{4}$$
is B0 as incorrect combining of fractions

$$\frac{n^2 - n + n^2 + n}{2} = \frac{2n^2}{2}$$

This mark is for eliminating -n and n either by showing by crossing or writing on same line and writing next line without them $\frac{n^2}{2} - \frac{n}{2} + \frac{n^2}{2} + \frac{n}{2}$

B1

B1

 $\frac{2n^2}{2} = n^2$

This mark is for cancelling 2 top and bottom

Page 1 of 8

$$\frac{n^2}{2} + \frac{n^2}{2} = n^2$$

Alternative Method

$$\frac{n}{2}((n-1) + (n+1))$$
This mark is for factorising out a common factor.
$$\frac{n}{4}(n-1+n+1)$$
 is B0 as incorrect factorisation
B1
$$\frac{n}{2}(2n)$$

 n^2

1n² is OK

[3]

B1

B1

B1

M1

M1

A1

M1

[3]

Q4.

x(x + 3)

(x + 3)(5x - 4)	
or (<i>x</i> + <i>a</i>)(5 <i>x</i> b)	
where ab = ±12 or 5a b = 11	

$$\frac{5x-4}{x}$$
 or $5-\frac{4}{x}$
Do not allow further working

Q5.

6(x + 3) or (-)2(x - 2) or 6x + 18 or 2x - 4 or -2x + 4 or (x - 2)(x + 3)

6x + 18 - 2x + 4 or 4x + 22 or x2 - 2x + 3x - 6 or x2 + x - 6

> allow three correct terms after expansion ignore RHS and denominator allow three correct terms after expansion as denominator or

				M1
	X ² – 3	3 <i>x</i> – 28 =	0	A1
	(x – 1	7)(<i>x</i> + 4) (= (0) correct method to solve their quadratic equation by correct substitution into the quadratic formula or correct completion of the square or correct factorisation	M1
	(<i>x</i> =)	7 and (x)	- 4 SC2 (x =) 7 or (\neq) - 4	A1
	Addi	tional Gui	dance	
	Correct substitution into quadratic formula			
	x = -	3±√(-3) 2	$\frac{1}{2} - 4 \times 1 \times -28$	
QØ	5. (a)	(2x ±a)(x	$(\pm b)$ $ab = \pm 3$	M1
		(2 <i>x</i> – 3)(<i>x</i>	+ 1) Ignore non contradictory further work such as solving the quadratic	A1
	(b) $(2x-3)(2x+3)$		B1	
		$\frac{x+1}{2x+3}$	Do not award if incorrect further work. ft their (a) if common factor cancelled eg (a) = $(2x + 3)(x)$ answer is $\frac{x-1}{2x-3}$	B1ft
Q7	7.	10x		

[5]

[4]

RHS

 $7x + \frac{10x}{x+2} = 9$

or
$$7(x+2) + 10 = \frac{9}{x}(x+2)$$

or $7 + \frac{10x}{x+2} - \frac{9}{x} = 0$
M1 for equating two correct fractions
 $\frac{7(x+2)+10}{x+2} = \frac{9}{x}$ or $\frac{10}{x+2} = \frac{9-7x}{x}$
Also M1 for
 $7 + \frac{10x}{x(x+2)} = \frac{9(x+2)}{x(x+2)}$
M1

$$7x(x+2) + 10x = 9(x2)$$

oe M1

$$7x^2 + 14x + 10x = 9x + 18$$

or $7x^2 + 14x + 10x - 9x - 18 = 0$

A1

dep

[3]

Q8.

$$(x + 6)(x-2)$$

 $(x + 5)(x-5)$
B1

 $\frac{\operatorname{their} (x+6)(x-2)}{\operatorname{their} (x+5)(x-5)} \times \frac{\operatorname{their} x(x-5)}{x+6}$

Must have attempted to factorise at least two of the above

$$\frac{x(x-2)}{x+5} \text{ or } \frac{x^2 - 2x}{x+5}$$
A0 if incorrect further work seen

A1

M1

[5]

Q9. (a) $\frac{4c^5}{9d^3}$ or $\frac{4c^5d^{-3}}{9}$ or $\frac{0.4c^5}{d^3}$ or $0.4c^5d^{-3}$

B2 Any two of these three components

○ *numerator having c5 (no c in denominator)*

 denominator having d3 (no d in numerator) or numerator having d-3 (no d in denominator) 4

B1 Any one of these three components

- *numerator having c5 (no c in denominator)*
- denominator having d3 (no d in numerator) or numerator having d-3 (no d in denominator) 4

$$\bigcirc number \stackrel{\neg}{9} or 0.4$$

or
$$\frac{40c^7 d^3}{90d^6 c^2} \quad or \quad \frac{20c^7 d^3}{45d^6 c^2} \quad or \quad \frac{8c^7 d^3}{18d^6 c^2}$$

or
$$\frac{1.3c^7 d^3}{3d^6 c^2} \quad or \quad \frac{\frac{4}{3}c^7 d^3}{3d^6 c^2}$$

SC1
$$\frac{9d^3}{4c^5} \quad or \quad \frac{2.25d^3}{c^5}$$

Always award SC1 if this is their final answer even
$$\frac{4c^5}{4c^5}$$

Always award SC1 if this is their final answer even $\frac{4c^5}{9d^3}$ seen in working

(b)
$$(m + 1)(m - 4) \text{ on } 2^2 - 3m + 4$$
 seen as a common denominator *oe*

B1 5(*m* – 4) + 6(*m* + 1)

Allow one error in expansion if not showing brackets e.g. Allow 5m – 20 + m + 6

5m - 20 + 6m + 6their common denominator

or

$$\frac{5m - 20}{\text{their common denominator}^+}$$

$$\frac{6m + 6}{\text{their common denominator}}$$
Allow one error in expansion of numerator(s) their common denominator must be a quadratic

$$11m - 14$$
M1

$$\frac{11m - 14}{(m+1)(m-4)} \quad \text{or} \quad \frac{11m - 14}{m^2 - 3m - 4}$$

[7]

Β3

M1

Q10.

$$\frac{4(x-1)+2x}{x(x-1)}$$

(a)

oe e.g. two separate fractions Condone absence of brackets only if recovered

$$\frac{4(x-1)+2x}{x(x-1)} \qquad (=\frac{6x-4}{x(x-1)})$$

Do not condone absence of brackets even if recovered

A1

M1

(b)
$$6x - 4 = \Re(x - 1)$$

oe e.g. $4(x - 1) + 2x = \Re(x - 1)$

$$3x^{2} - 9x + 4 (= 0)$$

-3x² + 9x - 4 (= 0)

$$\frac{-9\pm\sqrt{(-9)^2-4\times3\times4}}{2\times3}$$

$$(\frac{9 \pm \sqrt{33}}{6})$$

Correct use of formula for their quadratic M1 Allow one sign error (must have square root and numerator all over 2a) Allow M2 for correct factorisation of their quadratic

oe

$$M2 (x - \frac{3}{2})^2 = \frac{9}{4} - \frac{4}{3} \quad oe$$

$$(x - \frac{3}{2})^2 = \frac{9}{4} + \frac{4}{3} = 0$$

$$M1 = 0$$

M2

A1

2.46 and 0.543 Must both be to 3 significant figures

M1

[7]

Q11.

(a)

М1

 $5x^2 + 10xy - 2xy - 4y^2$ Fully correct May be in a grid

	5x² + 8xy − 4y ft their four terms Do not ignore fw	A1ft
Alter (b)	$\frac{2 \pm \sqrt{(-2)^2 - (4 \times 1 \times -2)}}{2}$	
	oe Allow one error	M1
	$\frac{2 \pm \sqrt{(-2)^2 - (4 \times 1 \times -2)}}{2}$	
	or $\frac{2 \pm \sqrt{4 - 8}}{2}$	
	be Fully correct	A1
	2.7 and – 0.7 SC2 for either 2.7 or – 0.7	A1
	Alternative method 2 (x - 1)2 - 1 - 2 = 0	
	1 ± √3	M1
	oe Fully correct or 2.7() or – 0.7()	
	2.7 and – 0.7 SC2 for either 2.7 or – 0.7	AT
	Additional Guidance - 0.73() or 2.73()	A1
	– 22 in the discriminant is one error unless recovered	IVI LA LAU
(c)	(ax+b)(cx+d)	
	or $(x + 2)(x - 2)$	

where ac = 3 and bd = -10

or $ad + bc = -1$	M1	
(3x + 5)(x - 2)	A1	
$\frac{3x+5}{x+2}$ Do not ignore fw		
Additional Guidance	A1	
$\frac{(3x-5)(x+2)}{(x+2)(x-2)}$	M1 A0	
$=\frac{(3x-5)}{(x-2)}$	A0	[9]
2.		
(3n - 1)(-2) or $(3n + 1)nor n(n - 2) as denominator on LHS$	M1	
$(3n-1)(-2) - (3n+\hbar)$	M1 dep	
3n2 – 6n n + 2 or – 3 n n dep on first M1 only	M1 dep	
3n ² – 6n –n + 2 and – 3n n Correct common denominators must be used for 4 marks to be awarded	A1	
		[4]

[4]

Q12.