Mark schemes

Q1.

$$
2 x+\frac{1}{x}
$$

Q2.
(a) $x^{2}+5 x-5 x-25$

Must see full correct expansion
(b) $(3 x+p)(x+q)$ wher $q= \pm 20$
$(3 x-4)(-5)$ in numerator
$\frac{3 x-4}{x+5}$
Do not ignore further working ie max 2 marks if any further working

Q3.

$$
\frac{n(n-1)+n(n+1)}{2}
$$

This mark is for combining fractions or if fractions dealt with separately, for combining n2 terms correctly

$$
\frac{n^{2}-n+n^{2}+n}{4} \text { is } B O \text { as incorrect combining of fractions }
$$

$\frac{n^{2}-n+n^{2}+n}{2}=\frac{2 n^{2}}{2}$

This mark is for eliminating -n and n either by showing by crossing or writing on same line and writing next line without them

$$
\frac{n^{2}}{2}-\frac{n}{2}+\frac{n^{2}}{2}+\frac{n}{2}
$$

$\frac{2 n^{2}}{2}=n^{2}$
This mark is for cancelling 2 top and bottom

$$
\frac{n^{2}}{2}+\frac{n^{2}}{2}=n^{2}
$$

Alternative Method

$$
\begin{aligned}
& \frac{n}{2}((n-1)+(n+1)) \\
& \qquad \begin{array}{l}
\text { This mark is for factorising out a common factor. } \\
\frac{n}{4}(n-1+n+1) \text { is BO as incorrect factorisation }
\end{array}
\end{aligned}
$$

> This mark is for combining terms inside bracket correctly
n^{2}

$$
1 n^{2} \text { is } O K
$$

Q4.

$$
x(x+3)
$$

$$
(x+3)(5 x-4)
$$

$$
\text { or }(x+a)(5 x \text { b) }
$$

$$
\text { where } a b= \pm 12 \text { or } 5 a b=11
$$

$$
\frac{5 x-4}{x} \text { or } 5-\frac{4}{x}
$$

Do not allow further working

Q5.
$6(x+3)$ or $(-) 2(x-2)$
or $6 x+18$ or $2 x-4$ or $-2 x+4$
or $(x-2)(x+3)$
$6 x+18-2 x+4$
or $4 x+22$
or $x 2-2 x+3 x-6$
or $x 2+x-6$
allow three correct terms after expansion
ignore RHS and denominator
allow three correct terms after expansion as denominator or

$$
x^{2}-3 x-28=0
$$

$$
(x-7)(x+4)(=0)
$$

correct method to solve their quadratic equation by correct substitution into the quadratic formula or correct completion of the square or correct factorisation
$(x=) 7$ and $(*)-4$

$$
\text { SC2 (x =) } 7 \text { or }(x)-4
$$

Additional Guidance
Correct substitution into quadratic formula

$$
x=\frac{--3 \pm \sqrt{(-3)^{2}-4 \times 1 \times-28}}{2 \times 1}
$$

Q6.
(a) $(2 x \pm a)(x \pm b)$

$$
a b= \pm 3
$$

$$
(2 x-3)(x+1)
$$

Ignore non contradictory further work such as solving the quadratic
(b) $(2 x-3)(2 x+3)$

$$
\frac{x+1}{2 x+3}
$$

Do not award if incorrect further work.
$f t$ their (a) if common factor cancelled eg $(a)=(2 * 4) 3)(x$ answer is $\frac{x-1}{2 x-3}$

Q7.

$$
7 x+\frac{10 x}{x+2}=9
$$

$$
\text { or } 7(x+2)+10=\frac{9}{x}(x+2)
$$

$$
\text { or } 7+\frac{10 x}{x+2}-\frac{9}{x}=0
$$

M1 for equating two correct fractions

$$
\frac{7(x+2)+10}{x+2}=\frac{9}{x} \text { or } \frac{10}{x+2}=\frac{9-7 x}{x}
$$

$$
\text { Also M1 for } \quad 7+\frac{10 x}{x(x+2)}=\frac{9(x+2)}{x(x+2)}
$$

$$
\begin{gathered}
7 x(x+2)+10 x=9(\times 2) \\
o e
\end{gathered}
$$

$$
7 x 2+14 x+10 x=9 x+18
$$

$$
\text { or } 7 x 2+14 x+10 x-9 x-18=0
$$

Q8.
$(x+6)(x-2)$
$(x+5)(x-5)$
$x(x-5)$
$\frac{\text { their }(x+6)(x-2)}{\text { their }(x+5)(x-5)} \times \frac{\text { their } x(x-5)}{x+6}$
Must have attempted to factorise at least two of the above

$$
\frac{x(x-2)}{x+5} \text { or } \frac{x^{2}-2 x}{x+5}
$$

AO if incorrect further work seen

Q9.
(a) $\frac{4 c^{5}}{9 d^{3}}$ or $\frac{4 c^{5} d^{-3}}{9}$ or

$$
\frac{0.4 c^{5}}{d^{3}} \text { or } 0.4 c^{5} d^{-3}
$$

B2 Any two of these three components

O number $\frac{4}{9}$ or 0.4
B1 Any one of these three components

- numerator having c5 (no c in denominator)denominator having d3 (no d in numerator) or numerator having $d-3$ (no d in denominator)
number $\frac{4}{9}$ or 0.4
or
$\frac{40 c^{7} d^{3}}{90 d^{6} c^{2}}$ or $\frac{20 c^{7} d^{3}}{45 d^{6} c^{2}}$ or $\frac{8 c^{7} d^{3}}{18 d^{6} c^{2}}$
or $\frac{1.3 c^{7} d^{3}}{3 d^{6} c^{2}}$ or $\frac{\frac{4}{3} c^{7} d^{3}}{3 d^{6} c^{2}}$
$\operatorname{SC} 1 \frac{9 d^{3}}{4 c^{5}}$ or $\frac{2.25 d^{3}}{c^{5}}$
Always award SC1 if this is their final answer even
if $\frac{4 c^{5}}{9 d^{3}}$ seen in working
(b) $(m+1)(m-4) a m^{2}-3 m-4$ seen as a common denominator
oe
$5(m-4)+6(m+1)$
Allow one error in expansion if not showing brackets
e.g. Allow $5 m-20+m+6$
their common denominator
or
$5 m-20$
their common denominator
$6 m+6$
their common denominator
Allow one error in expansion of numerator(s)
their common denominator must be a quadratic
$\frac{11 m-14}{(m+1)(m-4)}$ or $\frac{11 m-14}{m^{2}-3 m-4}$

Q10.
(a) $\frac{4(x-1)+2 x}{x(x-1)}$
oe e.g. two separate fractions Condone absence of brackets only if recovered

$$
\frac{4(x-1)+2 x}{x(x-1)} \quad\left(=\frac{6 x-4}{x(x-1)}\right)
$$

Do not condone absence of brackets even if recovered
(b) $6 x-4=8(x-1)$

$$
\text { oe e.g. } 4(x-1)+2 x=8(x-1)
$$

$$
\begin{aligned}
3 x^{2}-9 x+4 & (=0) \\
& -3 x^{2}+9 x-4(=0)
\end{aligned}
$$

$$
\frac{--9 \pm \sqrt{(-9)^{2}-4 \times 3 \times 4}}{2 \times 3}
$$

$$
\left(\frac{9 \pm \sqrt{33}}{6}\right)
$$

Correct use of formula for their quadratic M1 Allow one sign error (must have square root and numerator all over 2a)
Allow M2 for correct factorisation of their quadratic
M2 $\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}-\frac{4}{3}$ oe

M1 $\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}+\frac{4}{3}=0$
2.46 and 0.543

Must both be to 3 significant figures

Q11.
(a) $5 x^{2}+10 x y-2 x y-4 y^{3}$

Allow one error in their four terms

$$
\begin{aligned}
& 5 x^{2}+10 x y-2 x y-4 y^{7} \\
& \text { Fully correct } \\
& \text { May be in a grid }
\end{aligned}
$$

$$
\begin{aligned}
& 5 x^{2}+8 x y-4 y^{1} \\
& \text { ft their four terms } \\
& \text { Do not ignore fw }
\end{aligned}
$$

Alternative method 1
(b)

oe
Allow one error

$$
\frac{2 \pm \sqrt{(-2)^{2}-(4 \times 1 \times-2)}}{2}
$$

$$
\text { or } \frac{2 \pm \sqrt{4--8}}{2}
$$

oe
Fully correct
2.7 and -0.7

SC2 for either 2.7 or -0.7

Alternative method 2
$(x-1) 2-1-2=0$
oe
$1 \pm \sqrt{3}$
oe
Fully correct or 2.7(...) or - 0.7(...)
2.7 and -0.7

SC2 for either 2.7 or -0.7

Additional Guidance

- $0.73(\ldots$...) or $2.73(\ldots)$
- 22 in the discriminant is one error unless recovered
(c) $(a x+b)(c x+d)$

$$
\begin{aligned}
& \text { or }(x+2)(x-2) \\
& \qquad \text { where } a c=3 \text { and } b d=-10
\end{aligned}
$$

$$
\text { or } a d+b c=-1
$$

$$
(3 x+5)(x-2)
$$

$$
\frac{3 x+5}{x+2}
$$

Do not ignore fw

Additional Guidance $\frac{(3 x-5)(x+2)}{(x+2)(x-2)}$

$$
=\frac{(3 x-5)}{(x-2)}
$$

Q12.

$$
\left.\begin{array}{l}
\begin{array}{rl}
(3 n-1)(2-2) \text { or }(3 n+1) n \\
& \text { or } n(n-2) \text { as denominator on LHS } \\
(3 n-1)(-2)-(3 n+\hbar)
\end{array} \\
3 n 2-6 n 1++2 \text { or }-3 n n \\
\\
\text { dep on first M1 only }
\end{array}\right\} \begin{array}{r}
3 n^{2}-6 n-n+2 \text { and -3A n } \\
\begin{array}{l}
\text { Correct common denominators must be used for } 4 \text { marks to } \\
\text { be awarded }
\end{array}
\end{array}
$$

