Mark schemes

Q1.	20		
(a)	-30	B1	
(b)	4(t-5) Accept 4 × (t - 5)		
	Accept 4 \times ($i = 5$)	B1	
(c)	6 <i>m</i> – 12 or 5 <i>m</i> + 10	M1	
	11 <i>m</i> – 2		
	0446	A1	
(d)	8g4k5 B1 for two components correct	B2	
(0)	5q(2q – 3r)	ΒZ	
(0)	B1 for 5(2q2 – 3qr) or q(10q – 15r)		
	or 10q(q – 1.5r) or 5q(2q – ?) or 5q(? – 3r)	5.0	
		B2	
Q2.			
-	6f + 3e or 3e+6 f		
	do not accept further working eg 6f + @ = ¶e		
(b)	36		B1
(6)			B1
	Additional Guidance		
	Do not allow embedded answer to score any marks without correct answer 3 on answer	6	
Q3. (a)	4	. .	
(b)	-30	B1	
(U)		B1	
(c)	5c = 19 – 4 or 15	M1	

[8]

[2]

(d)
$$4(t-5)$$

Accept $4 \times (t-5)$

Β1

A1

[5]

Q4. 3(2x - 3) or 4(x - 1)oe Denominator not necessary ... marks for numerator terms M1 6x - 9 + 4x - 4oe allow one incorrect term M1 dep their $10x - 13 = 2 \times 12$ oe $eg 20x - 26 = 2 \times 24$ Do not allow their 10x - 13 = 2M1 dep $(x =) 3.7 \text{ or } \frac{37}{10}$ A1 All steps clearly shown with M3 awarded Strand (ii) Q1 Q5. (a) 9 Β1 Additional Guidance Answer of 9 on answer line or clearly stated in script is the only acceptable answer Do not allow embedded answers such as $6 \times 9 =$ (b) 3y = 9 - 15 or 3y = -6or $y = \frac{9}{3} - \frac{15}{3}$ or y = 3 - 5or (9 - 15) ÷ 3 oe

M1

Additional Guidance Embedded answer. M1 A0 T&I is M0 unless answer stated as –2 then it is full marks.

(c)
$$4w - 2w (= 2w)$$
 or $7 - 2 (= 5)$
oe

oe

$$2\frac{1}{2} \text{ or } \frac{5}{2}$$

ft if M awarded and at most one error

A1ft

A1

Additional Guidance

Allow ft if equation written as 2w = a but not a = 7 or a = 2or bw = 5 but ot b = 4

2w = 9, w = 4.5	M1 A0 A1ft
$6w = 5, w = \frac{5}{6}$ or 0.83	M1 A0 A1ft
6 <i>w</i> = 9	M0
2 <i>w</i> = 7, <i>w</i> = 3.5	M1 A0 A0ft
2w = 2, w = 1	M1 A0 A0ft
4 <i>w</i> = 5, <i>w</i> = 1.25	M1 A0 A0ft
-	M1 A1 A0
Embedded answer	

T&I is M0 unless answer stated as 2.5 then it is full marks

[6]

Q6.
(a)
$$3 \times 4 (+) 2 \times -5 \text{ or } 12 (+) -10$$

M1
(b) $(c =) 12$
(c) $6w - 8 = 7$
M1
B1

AQA GCSE Maths - Algebra and Graphs (F)

$$6W = 7 + 8 \text{ or } 6 \quad W = 15$$

 $3W = 3.5 + 4 \text{ or } 3W = 7.5$
(W =) 2.5

$$oe eg = \frac{15}{6} or \frac{5}{2} or \frac{21}{2}$$

(d) $a^3 + 4a$ B1 for a3 or 4a Do not accept a4 B2

Β1

Β1

Q7. (a)

-) 25
- Embedded ie 25 7 = 18 B0
- (b) An equation whose solution is 8 Equation does not have to be linear $eg x^2 = 64$ Accept x = 8
- (c) Two values where b a = 10Accept 0, negative numbers and non-integers B1 for any two values where a + b = 10or for any two values where a - b = 10B1 10 + a = b oe seen

B2

[4]

Q8.

Alternative method 1- based on a fraction of the number of males

$$\frac{1}{4} \times 2x(+) \frac{3}{8} \times x \text{ or } \frac{7}{8}x \text{ where } x\text{ is the number of males}$$

$$\frac{1}{4} \times 2(+) \frac{3}{8}(\times 1) \text{ or } \frac{7}{8}$$
M1
$$\frac{1}{4} \times 2x + \frac{3}{8} \times x = 84 \text{ or } \frac{7}{8}x = 84 \text{ or } 7x = 672$$

oe

A1

$$\frac{1}{2}$$
 $\frac{2}{2}$ $\frac{3}{1}$ $\frac{1}{2}$ $\frac{7z}{84}$ or $\frac{7z}{84}$

$$\frac{1}{4} \times \frac{2}{3} \times z + \frac{3}{8} \times \frac{1}{3} \times z = 84 \text{ or } \frac{72}{24} = 84$$

or $\frac{3}{8} \times \frac{1}{3} + \frac{1}{4} \times \frac{2}{3}$ linked to 84 or $\frac{7}{24}$ linked to 84

$$\frac{1}{4} \times y \quad (+) \quad \frac{3}{8} \times \frac{y}{2} \quad \text{or} \quad \frac{17}{16} y \text{ where } y \text{ is the number of females} \\ \frac{1}{4} (\times 1) \quad (+) \quad \frac{3}{8} \times \frac{1}{2} \quad \text{or} \quad \frac{7}{16}$$

$$\frac{1}{4} \times y + \frac{3}{8} \times \frac{y}{2} = 84 \text{ or } \frac{7}{16} y = 84 \text{ or } 7y = 1344$$

or $7y = 1344$
 $\frac{1}{4} (\times 1) + \frac{3}{8} \times \frac{1}{2}$ linked to 84 or $\frac{7}{16}$ linked to 84

$$y = 84 \div \text{their } \frac{7}{16} \text{ or } y = 84 \times \text{their } \frac{16}{7} \text{ or } y = 192$$

oe
Dep on M1M1
$$84 \div \text{their } \frac{7}{16} \text{ or } 84 \times \text{their } \frac{16}{7} \text{ or } 192$$

M1dep

AQA GCSE Maths - Algebra and Graphs (F)

$$\frac{1}{4} \times 2 + \frac{3}{8}$$
 (×1) linked to 84 or $\frac{7}{8}$ linked to 84

$$84 \div their \frac{7}{8} \text{ or } 84 \times their \frac{8}{7} \text{ or } 96$$
288

Alternative method 2- based on a fraction of the number of females

 $84 \div their \frac{7}{8}$ or $x = 84 \times their \frac{8}{7}$ or x = 96

Dep on M1M1

oe

M1dep

A1

M1dep

A1

288

Alternative method 3- based on a fraction of the total number of people

 $\frac{1}{4} \times \frac{2}{3} \times z$ or $\frac{4z}{24}$ or $\frac{3}{8} \times \frac{1}{3} \times z$ or $\frac{3z}{24}$

where *i*s the number of people in the office

oe $\frac{1}{4} \times \frac{2}{3}$ or $\frac{4}{24}$ or $\frac{3}{8} \times \frac{1}{3}$ or $\frac{3}{24}$

M1dep

M1

 $z = 84 \div \text{their} \frac{7}{24} \text{ or } z = 84 \times \text{their} \frac{24}{7} \text{ or } 7z = 2016$ oe Dep on M1M1 $84 \div \text{ their } \frac{7}{24} \text{ or } 84 \times \text{their } \frac{24}{7}$ M1dep 288

200

A1

M1

Alternative method 4 - chooses numbers of females and males and factors up or down

Chooses numbers for females and males in the ratio 2 : 1 and works out the numbers of females and males wearing glasses (which should be in the ratio 4 : 3)

eg 32 females and 16 males and $\frac{1}{4} \times 32$ (+) $\frac{3}{8} \times 16$ or 8 and 6 or 14

Works out multiplying factor by 84 ÷ their total number of people wearing glasses

eg
$$84 \div (\frac{1}{4} \times 32 \div \frac{3}{8} \times 16)$$
 or $84 \div 14 (= 6)$ M1dep

Multiplies their total of females and males by their multiplying factor

eg 32 × their 6 + 16 × their 6 or (32 + 16) × their 6

M1dep

A1

M1

A1

[4]

288

Additional Guidance

If more than one method is attempted:

if an answer is given, mark the method leading to that answer if no answer is given, mark each method and award the best mark

Q9.

$$(8x =) 30 + 10 \text{ or } (8x =) 40$$

5

SC1 2.5 or 8 oe

Alternative method

$$x - \frac{10}{8} = \frac{30}{8}$$

AQA GCSE Maths - Algebra and Graphs (F)

	or x	$=\frac{30}{8}+\frac{1}{3}$	0 8			
	or their (30 + 10) ÷ 8				M1	
	5		SC1 2.5 or $\frac{20}{8}$ oe		Al	[2]
Ql		(5 <i>x</i> + 3 =	e) 3 <i>x</i> + 6	B1		
			r 3x= their 6 – 3 or 2x = 3 oe	M1		
		1.5	oe ft for linear equation if B0 scored	A1 ft		
	(b)	2x + 32 c	or 4x– 20 Accept ax + ab for M1	M1		
		6 <i>x</i> + 12 c	or 6(x + 2)	A1		
		<i>α</i> = 6 and	b = 2 ft from their 6x + 12 if M1 earned SC2 a = 6 and b = 12 SC1 a = 6	A1 ft		[6]
Ql		xor 4x or 1	.6 + 2 or 18 oe		M1	
	4 <i>x</i> =	18			A1	
	4.5 c	oe	ft their rearrangement with one error if M1 awarded		A1ft	[3]

Q12.

(a) 3(x-5)

(b) 5y + 20t - 10B1 for 2 correct terms. Penalise any incorrect further working. Eg 5*y* + 20*t* - 10 = 25*yt* - 10 is B1 5y + 20t - 1 = 25yt - 1 is B0 (error in expansion and *incorrect further work*) 5y + 20t – 10 = 5(y + 4t – 2) given as answer is B1 as shows a misunderstanding of expanding brackets. Β2 (c) 3W + 6 = 2W - 1 $w+2 = \frac{2}{3}w - \frac{1}{3}$ M1 3W - 2W = -1 - 6This mark is for rearranging their expansion correctly to get w terms one side and number terms on the other. $w - \frac{2}{3} w = -\frac{1}{3} - 2$ (oe) M1 -7 ft on one error A1ft [6] Q13. 6x - 2x (= 4x) or 13 + 5 (= 18)M1 4x = 18A1 4.5. $\frac{18}{4}, \frac{9}{2}, \frac{41}{2}, \frac{1}{2}$ etc. ft on one error incorrect cancelling after a correct fraction seen is not penalised A1ft [3] Q14. $5x - 3x_{\text{or}} 11 + 9$

M1

2 <i>x</i>	= 20		Al	
10		ft on one error only	A1ft	[3]
Q15. (a)	6 <i>x</i> = 28	+ 50e <u>28+5</u> 6	M1	
	5.5 oe		A1	
(b)	2a + 'b	B1 for one correct term Do not ignore further work	B2	[4]
Q16. (a)	5 <i>x –</i> 10	(= 35) <i>x</i> - 2 = 7	M1	
	5 <i>x</i> = 45	$\chi = 7 + 2$	M1	
	9	ft For M1M0 or M0M1	A1ft	
(b)	9 <i>y</i> – 12	$= \beta$ or $6y - 9y (= -3y)$	M1	
	13 – 1 (= 1	12) or 1 – 13 (= –12)	M1	
	4	ft For M1M0 or M0M1 with only one rearrangement error	A1ft	[6]

Q17.

Alternative method 1

May be implied $eg \frac{2}{40}$ Β1 2 + x + 2x + 5 = their 40 or 3x + 7 =their 40 or (their 40 - 2 - 5) ÷ 3 or $33 \div 3$ oe equation e.g. 3x + 5 = 38 (scores B1M1) their 40 must be an integer M1 (x =) 11ft B0M1 Does not have to be an integer Accept answer rounded or truncated to at least 2 sf A1ft $\frac{27}{40}$ or 0.675 or 67.5% Only ft evaluation of $\frac{2 \times \text{their integer } x + 5}{40}$ and 0 < answer < 1 Denominator must be 40 (may subsequently be simplified) B1ft Alternative method 2 $\frac{2}{2+x+2x+5} = \frac{1}{20}$ or $\frac{x+2x+5}{2+x+2x+5} = \frac{19}{20}$ oe equation M2 (x =) 11A1 $\frac{27}{40}$ or 0.675 or 67.5% Only ft evaluation of $\frac{2 \times \text{their integer } x + 5}{40}$ and 0 < answer < 1 Denominator must be 40 (may subsequently be simplified) B1ft Alternative method 3 100% - 5% - 12.5% or 3x 82.5% 3x Using 2 → 5% and 5 12.5% \rightarrow oe M1 82.5% ÷ 3 or x 27.5% Х

0e _

40

M1dep

A1

$$2x + 5 \quad 2 \times 27.5\% + 12.5\%$$

 $\rightarrow \qquad oe \qquad M1dep$
 $\frac{27}{40}$ or 0.675 or 67.5%

Alternative method 4

$$3x \rightarrow 1 - \frac{1}{20} - \frac{2.5}{20} \text{ or } 3x \rightarrow \frac{16.5}{20}$$

$$Using \ 2 \rightarrow \frac{1}{20} \text{ and } 5 \rightarrow \frac{2.5}{20}$$

$$oe$$
M1

$$x \to \frac{16.5}{20} \div 30 \text{ or } x \to \frac{5.5}{20}$$

$$oe$$
M1dep

$$2x + 5 \rightarrow 2 \times \frac{5.5}{20} + \frac{2.5}{20}$$
 or $2x + 5 \rightarrow \frac{13.5}{20}$
oe M1dep

Additional Guidance

(Alt 1) \neq 6 (no working)Answer $\frac{17}{40}$ (first B1 implied)(Alt 1) $2 + \neq 2x + 5 = 20$ BOM1 $x = \frac{13}{3}$ Answer $\frac{13.666}{20}$ Answer $\frac{13.5}{20}$ B1M1A1B0

11 by inspection or T & I scores the first 3 marks

Answer
$$\frac{2x+5}{40}$$
 B1M0A0B0
Answer $\frac{2x+5}{3x+7}$

	Zero	
Ratio eg 27 : 40	B1M1A1B0	
Expressed only in words e.g. 27 out of 40	B1M1A1B0	
27 out of 40 and $\frac{27}{40}$	B1M1A1B1	
27 40 seen with incorrect change of form or incorrect cancelling 27	ý 5	
eg $\frac{21}{40}$ and answer 0.27	B1M1A1B1	
Ignore chance words if $\frac{27}{40}$ seen		
eg 40 and answer Unlikely	B1M1A1B1	[4]
Q18. 5(4c + 3) and $2(c - 8)or20c + 15$ and $2c - 16oe \ e.g. \ 10(4c + 3) + 4(c - 8)Allow one error in expansion if not showine.g. \ Allow \ 20c + 3 \ and \ 2c - 16Equation or fractions not necessary$	g brackets M1	
Correct equation with no unexpanded brackets e.g.1 $20c + 15 + 2c - 16 = 10$		
e.g.2 22c - 1 = 10 e.g.3 $\frac{(20c+15)}{10} + \frac{(2c-16)}{10} = 1$		
e.g.4 $\frac{44c-2}{20} = 1$ Eliminates denominators correctly and collects terms for the	A1 ir equation	
e.g.1 20 <i>c</i> + 2 <i>c</i> = 10 – 15 + 16		

e.g.2 22c = 11 dep on first M1

	Do not award this mark if the denominator has been eliminated incorrectly at any time in the working Allow one sign error when collecting terms	M1dep	
$\frac{1}{2}$ or $\frac{11}{22}$	oe Only ft from M1 A0 M1 with a maximum of one error in expansions and collecting terms SC2 Answer $\frac{15}{22}$ oe	A1ft	
Q19. C = 0.6(0)n + 2	2.5(0)		
	oe Must have C = for B3 B2 C = 0.6n + k (k ≠ 0) or C = an + 2.5 (a ≠ 0) or 0.6n + 2.5 ^{B1} 0.6n or an + 2.5 (a ≠ 0)		
	or C = 60n + 250		В3
Additional Gui	$\frac{3}{1}$ or $\frac{1}{1}$ for 0.6 and/or $\frac{5}{1}$ for 2.5		
	or $n \times 0.6$ for $p.6$		
eg C = 0.6 × r			В3
n × 0.6 + 2.5			B2
0.6 × n			B1
Penalise by o	ne mark the use of <i>n</i> 0.6 f ø r 0.6		
eg <i>C</i> = <i>n</i> 0.6 +	2.5		B2
n0.6 + 2.5			B1
n0.6			В0

[4]

	eg $y = 0.6x + 2.5$	B2	
	0.6 <i>x</i> + 2.5	B1	
	2 <i>p</i> + 2.5	В0	
	Transposing 0.6 and 2.5 scores zero eg $C = 2.5n + 0.6$	В0	
	Ignore £ signs e.g. £€£0.6 <i>n</i> + £2.5 0 r = £0.60 <i>n</i> + £2.5	В3	
	C = 1.2n + 2.5	B2	
	1.2 <i>n</i> + 2.5	B1	
	<i>C</i> = 0.6 <i>n</i> + 2.5 in working with 0.6 <i>n</i> + 2.5 on answer line	В3	
	Equivalent formula but of the subject scores B2 eg $100C = 60n + 250$	B2	[3]
Qź	20.		
	3(10 -)		
	or 30 – 3 <i>x</i>		
	Do not accept $54 + 15x = 3(10 - x)$		
	Do not accept 54 + 15 x = 30 – 3x		
	$\frac{18}{3} + \frac{5x}{3}$		
	or 6 + $\frac{5x}{3}$		
		M1	
	18 + 5x = 30 - x3		
	$6 + \frac{5x}{3} = 10 - x$		
	3 = 10 - x	M1dep	
	5x + 3x = 30 - 18		
	Collecting their 4 terms (2 stages)		
	oe		

$$\frac{5x}{3} + x = 20 - 6$$
M1

1.5 or $\frac{3}{2}$ or $1\frac{1}{2}$
dep on 3rd M1

Alt

(4)

Q21.

(a) 4

(b) $2x = 1 - 5$ or $2x = -4$

-2

M1

(5)

Q22.

 $12x - 28 (= 20)$

 $3x - 7 = 20 \div 4$

 $12x = 20 + 28$

 $3x = \frac{5}{4} + 7$

 $3x = \frac{5}{4} + 7$

This mark is for separating terms in their equation

M

4

ft if M1M0 or MOM1

Alt

(5)

Q23.

(a) Alternative method 1

 $6x - their 4x = their -10 - 4$

or $2x = -14$

 ce

 $\frac{min - 10}{6 - meir 4}$

 $or - \frac{14}{2}$

(b) 2x = 1 - 5 or 2x = -4

(c) 3x = -14

 ce

 $\frac{min - 10 - 4}{6 - meir 4}$

 $or - \frac{14}{2}$

B0

[5]

		M1
	–7 ft their (4x – 10)	A1ft
	Alternative method 2 3x + 2 = 2x - 5	B1
	their $3x - 2x = -5$ – their 2 oe	M1
	–7 ft their (3x + 2)	A1ft
	Additional Guidance their $(4x - 10)$ must be two terms with one correct to award their $(3x + 2)$ must be two terms with one correct to award the $6x + 4 = 4x - 5$, $2x = -9$, $x = -\frac{9}{2}$	
	3x + 4 = 2x - 5x = -9	BOM1A1ft BOM1A1ft
	$6x + 4 = 22x - 25$ (2 incorect terms), $29 = 16x$, $x = \frac{29}{16}$	ΒΟΜΟΑΟ
(b)	2y –y4 B1 each term Do not ignore fw for B2	В2
	Additional Guidance Do not accept y2	
	2y + -y4	B1
	$2y - y^4 = y^3$	B1
	$2 \times y - y4$	B1
	y×2-y×y3	В0
	<i>y</i> 2 + - <i>y</i> 4	BO

Q24.

$$9 + 3x + x - 5 + 2$$

or $6x + 4$
or $3x + x - 5 + 2$
or $6x - 5$
 e^{0}
Their $(6x + 4) = 100$
or their $6x - 5 = 91$
or $6x = 96$
 $\frac{9}{16er} (6x + 4) = \frac{9}{100}$
 $x = 16$
 $\frac{11}{100}$
 $ft their 16$
Bit
Q25.
(a) $y - 8 = 3w$
 $\frac{y}{3} = \frac{8}{3} = w$
 $SC1 = \frac{y - 8}{3} = w$
 $Do not ignore further work$
(b) $5x + 20$
 $5x - 3x = 23 - 20$
or $2x = 3$
their $\overline{9} - 3x = 23 - their 20$
1.5
 e^{0}
Aft

AQA GCSE Maths - Algebra and Graphs (F)

[4]

A1

Β1

[5]