M1.

Alternative method 1

27.5 or 26.5 or 20.5 or 19.5 or 15.5 or 14.5 or 14.35 or 14.25 or 19.25 or 19.15 or 1.55 or 1.45

Any one seen
a bound of $27 \div$ a bound of 1.5
Must see the calculation written down
$26.5 \leq a$ bound of $27 \leq 27.5$ but not 27
$1.45 \leq a$ bound of $1.5 \leq 1.55$ but not 1.5
eg $127.49 \div 1.45$
eg $226.45 \div 1.54999$
$26.5 \div 1.55$
Must see the calculation written down
$26.5 \div 1.55$ scores B1 M1 M1
[17.0, 17.1]
Must see method

Alternative method 2

27.5 or 26.5 or 20.5 or 19.5 or
15.5 or 14.5 or 14.35 or 14.25 or
19.25 or 19.15 or 1.55 or 1.45

Any one seen
$17 \times$ a bound of 1.5
Must see the calculation written down
$1.45 \leq a$ bound of $1.5 \leq 1.55$ but not 1.5
eg 117×1.45
eg 217×1.54999
17×1.55
Must see the calculation written down
17×1.55 scores B1 M1 M1
26.35 and 26.5

Must see method

Alternative method 3

> 27.5 or 26.5 or 20.5 or 19.5 or
> 15.5 or 14.5 or 14.35 or 14.25 or
> 19.25 or 19.15 or 1.55 or 1.45
> Any one seen
a bound of $27 \div 17$
Must see the calculation written down $26.5 \leq a$ bound of $27 \leq 27.5$ but not 27 eg $127.49 \div 17$ eg $226.45 \div 17$
$26.5 \div 17$
Must see the calculation written down
$26.5 \div 17$ scores B1 M1 M1

M2.
285 or $284 . \dot{9}$ or 275
or 12.5 or 13.5 or $13.4 \dot{9}$
or 18.5 or $18.4 \dot{9}$ or 17.5
their 285 as part of trapezium equation
or $\left(\frac{\text { their } 12.5+\text { their } 17.5}{2}\right) h$
oe their $285=(280$, 290] their $12.5=$ $[12.5,13)$ their $17.5=$ [17.5, 18)
$285=\left(\frac{12.5+17.5}{2}\right) h$
oe fully
correct

19 with no incorrect bounds used

M3.
350 or 450 or $449 . \dot{9}$
or 24.5 or 25.5 or $25.4 \dot{9}$
$450 \div 24.5$ or $18.3(6)$ or 18.4
or their $450 \div$ their 24.5
$450 \div 24.5$ and 18
or $449 . \dot{9} \div 24.5$ and 18

Additional Guidance

$400 \div 25$

M4.(a) $2520 \div 126$ or 20 or

$$
\begin{gathered}
126 \div 2520 \text { or } 0.05 \\
\text { oe }
\end{gathered}
$$

$44 \times$ their 20 or $44 \div$ their 0.05 or
$4960 \div$ their 20 or $4960 \times$ their 0.05
or 880 or 248
oe
M2 $44 \div 126 \times 2520$ or $4960 \div 2520 \times 126$

2520	880	1560	4960
126	44	78	248

(b) (minimum) 3785
(maximum) 3794
SC1 correct answers interchanged

M5.1495 or 1505 or $1504.9^{\text {seen }}$
74.5 or 75.5 or 75.4 क्een
$\frac{1495}{75.5}$ or $\quad \frac{1495}{75.49}$
$\frac{\text { their } \min [1450,1500)}{\text { their } \max (75,76]}$
19.8(...)

Must come from the correct calculation

19
Strand (i) Rounding down their answer
ft their 19.8
Qift

Alternative Method

$$
74.5 \text { or } 75.5 \text { or } 75.49 \text { seen }
$$

Any trial correctly evaluated

$$
\text { eg } 18 \times 75.5=1359
$$

19
Strand (i) Lower value

M6.(a) $\quad(175-170) \times 2$ or 10 (firefighters)

$$
\begin{aligned}
& \text { or }(185-175) \times 3.8 \\
& \text { or }(190-185) \times 6 \\
& \text { or }(200-190) \times 1.2 \text { or } 12
\end{aligned}
$$

$175 \leq$ height
Working needed
SC1 for 175 sheight
Condone 175-185 or 185-175

Alternative method

170 to $175=2$ or $=50$
or 190 to $200=2.4$ or $=60$
Counts squares
7.6 or 6
or
190 (firefighters) or 150
Must be from counting squares

175 sheight
or
$175 \leq$ height
Working needed
SC1 for 175 sheight
Condone 175-185 or 185-175

Additional Guidance

Ignore a slip in calculating the end bar(s) if middle correct
(b) Midpoints seen or implied
172.5, 180, 187.5, 195

Condone one error
their $\sum f x$
$10 \times 172.5+38 \times 180+30 \times 187.5+12 \times 195$
or $1725+6840+5625+2340$
or 16530

Condone one error ft their midpoints
their $\Sigma f x \div 90$
their $16530 \div 90$

184 or 183.7 or $183.66 \ldots$ or 183.67
 Anything less accurate than 2dp requires correct working seen
 NB Using heights gives 183.69 and scores B1 only

Alternative method

Midpoints seen or implied
172.5, 180, 187.5, 195

Condone one error
their $\sum f x$
$2 \times 172.5+7.6 \times 180+6 \times 187.5+2.4 \times 195$
or $345+1368+1125+468$
or 3306
Condone one error
ft their midpoints
their $\sum f x \div 18$
their $3306 \div 18$
M1 dep

Anything less accurate than 2dp requires correct working seen
NB Using heights gives 183.69 and scores B1 only

Additional Guidance

A repeated consistent error is only one error
(c) One correct bound seen
170.35 or 170.45 or
195.55 or 195.65
$195.6-170.4+0.1$
25.3

M7.39.5 or 24.5 or 40.5 or 25.5
or 965 or 975

One correctly evaluated trial using at least one bound or one correctly evaluated trial giving an answer in range 965 to 975
eg $39.5 \times 24.5=967(.75)$
or $39.7 \times 24.5=972(.65)$
or $40.5 \times 25.5=1032(.75$)
Trial values must be in range of bounds

Ticks cannot tell and 965 seen
and

One correctly evaluated trial giving an answer in range 965 to 970 or

Ticks cannot tell and 975 seen
and
One correctly evaluated trial giving an answer in range 970 to 975

$$
\begin{aligned}
& \text { eg } 967.75 \\
& \text { eg } 972.6
\end{aligned}
$$

Alternative method 1

One correctly evaluated trial giving an answer below 970 (or their value $[965,975]$)

One correctly evaluated trial giving an answer below 970
(or their value $[965,975]$)
and
One correctly evaluated trial giving an answer above 970
(or their value [965, 975])

Ticks cannot tell
and
One correctly evaluated trial giving an answer below 970
(or their value $[965,975]$)
and
One correctly evaluated trial giving an answer above 970
(or their value $[965,975]$)

$$
\begin{aligned}
& \text { eg } 967.75 \text { and } 1032.75 \\
& \text { or } 967.75 \text { and } 1000
\end{aligned}
$$

$$
\text { or } 967.75
$$

Additional Guidance

Trial values must be within range of bounds, e.g.
$39.5 \times 26=1027$ scores B1M0
$25 \times 40=1000$ on its own scores zero but see Alt method 2

M8.79.5 or 80.5 or
1.35 or 1.45 seen

B1
min shelf $[75,80) \div \max$ bottle $(1.4,1.5)$
$79.5 \div 1.45$
Condone 1.4499 or better

54
ft answer rounded down if M1A0 awarded

M9.9.5 or 10.5 seen

13
M1 must have been scored
Truncates their answer to nearest integer

Alternative method

9.5 or 10.5 seen
[10.49, 10.5] \times integer [10, 13]

and [10.49, 10.5] \times integer [14, 20]

Both must be correctly evaluated
$10.5 \times 13=136.5$
and $10.5 \times 14=147$

13
M1 must have been scored
or 450 and 540 or 450 and 549 B1 450 or 540 or 545 or 549

M11. (a) $12 \times 1.5(=18)$ or $8 \times 2.5(=20)$ $20 \times 2.5(=50)$ or 12×1
$12 \times 1.5+8 \times 2.5$ or $18+20$
$20 \times 2.5-12 \times 1$ or $50-12$
M1 dep
38
(b) 1.82 or 1.815 or 1.825 seen
oe eg sight of 182, 181.5 or 182.5
B1
30499999 or 29500000 seen or 29.5 (million)
Accept 30500000 or 30.5 (million)
their max
their min

> their max >30000000
> $1<$ their min <1.82

16804407 or 16804408 or 16804410 or 16804400 or 16804000
Strand (i)
Correct mathematical notation
Must be an integer answer
Accept 16800000 or 17000000 or 16.8 million or 17
million if first 3 marks awarded
SC3 16804407.16 or 16804407.71
SC1 [16 483 516, 16483 517]

M12.Possible weight given for one of Amy's fish
$[6.75,6.8)$ or $[4.25,4.3)$ or $[5.15,5.2)$
Any Amy weight could go down (or Kate up) by 0.05

Possible weight given for one of Kate's fish
(8.2, 8.25] or (3.4, 3.45] or (4.5, 4.55]

Any 3 Amy weights could go down (or Kate up) by 0.15

5 or 6 of these allowed values

$$
16.3-0.15=16.15 \text { or } 16.1+0.15=16.25
$$

Totals showing possible
Must have total for Kate > total for Amy

$$
\begin{aligned}
& \text { Amy }=[16.15,16.3) \\
& \text { Kate }=(16.1,16.25]
\end{aligned}
$$

