$$
\sqrt{48} \text { or } k=48
$$

ft value seen in the form $a \sqrt{b}$ where aand bare integers > 1

M2.

$$
\begin{aligned}
& \frac{10}{3 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \text { or } \frac{10 \sqrt{5}}{15} \\
& \frac{10}{3 \sqrt{5}} \times \frac{3 \sqrt{5}}{3 \sqrt{5}} \text { or } \frac{30 \sqrt{5}}{45} \\
& \text { or } \frac{\sqrt{20}}{3} \\
& \text { oe } \\
& \text { Must multiply numerator and denominator } \\
& \text { eg } \frac{10}{\sqrt{45}} \text { is MO } \\
& \frac{10}{\sqrt{45}} \times \frac{\sqrt{45}}{\sqrt{45}} \text { is M1 }
\end{aligned}
$$

$\frac{2 \sqrt{5}}{3}$

M3.
(a) $6 \sqrt{2}$
(b) $\sqrt{\frac{24}{6}}$ or $\sqrt{\frac{8}{2}}$ or $\sqrt{4}$

$$
\begin{aligned}
& \text { or } \frac{\sqrt{8}}{\sqrt{2}} \text { or } \frac{2 \sqrt{2}}{\sqrt{2}} \\
& \text { or } \frac{\sqrt{8} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} \text { or } \frac{\sqrt{16}}{2} \text { or } \frac{4}{2} \\
& \text { or } \frac{\sqrt{3} \times 2 \sqrt{2}}{\sqrt{6}} \text { or } \frac{2 \sqrt{6}}{\sqrt{6}} \\
& \text { or } \frac{\sqrt{3} \times 2 \sqrt{2} \times \sqrt{2}}{\sqrt{6} \times \sqrt{2}} \text { or } \frac{2 \sqrt{12}}{\sqrt{12}} \\
& \text { or } \frac{\sqrt{3} \times \sqrt{8} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} \text { or } \frac{\sqrt{24} \times \sqrt{6}}{\sqrt{6} \times \sqrt{6}} \\
& \text { or } \frac{\sqrt{144}}{6} \text { or } \frac{12}{6}
\end{aligned}
$$

2

Additional Guidance

$\frac{\sqrt{24}}{\sqrt{6}}$ does not score alone without further working

M4.

Alternative method 1

Correct order and all three correct values $\sqrt{20}, \sqrt{24}$ and $\sqrt{28}$

$$
\begin{aligned}
& \text { B2 three correct values } \sqrt{24}, \sqrt{28} \text { and } \sqrt{20} \\
& \text { or } \sqrt{20} \text { and } \sqrt{24} \\
& \text { or } \sqrt{20} \text { and } \sqrt{28} \\
& \text { or } \sqrt{24} \text { and } \sqrt{28} \\
& \text { B1 } \sqrt{20} \text { or } \sqrt{24} \text { or } \sqrt{28}
\end{aligned}
$$

Alternative method 2

Correct order and all three correct values $2 \sqrt{5}, 2 \sqrt{6}$ and $2 \sqrt{7}$

> B2 three correct values $2 \sqrt{6}, 2 \sqrt{7}$ and $2 \sqrt{5}$
> or $2 \sqrt{5}$ and $2 \sqrt{6}$
> or $2 \sqrt{5}$ and $2 \sqrt{7}$
> or $2 \sqrt{6}$ and $2 \sqrt{7}$
> B1 $2 \sqrt{5}$ or $\frac{10 \sqrt{5}}{5}$ or $2 \sqrt{6}$ or $2 \sqrt{7}$

Alternative method 3

Correct order and all three correct values 20, 24 and 28
$B 2$ three correct values 24,28 and 20
or 20 and 24
or 20 and 28
or 24 and 28
B1 20 or $\frac{100}{5}$ or 24 or $4 \times 3 \times 2$
or 12×2 or 8×3 or 4×6 or 28

Additional Guidance

Correct order is $\frac{10}{\sqrt{5}}, 2 \sqrt{3} \times \sqrt{2}, \sqrt{\frac{56}{2}}$
20, 24, 28 using Alt 3

B1 values using Alt 3 can be seen inside square root
$\sqrt{\frac{100}{5}}$ or $\sqrt{4 \times 3 \times 2}$ or $\sqrt{12 \times 2}$ or $\sqrt{8 \times 3}$ or $\sqrt{4 \times 6}$

M5.(a) Sight of $x Z x y,+x y$ and $-y$ Qlus some indication that $x y$ terms cancel.

Eg $x 2-2 x y+x y-y 2$

Minimum would be

$$
x 2-x y+x y-y 2=x 2-y
$$

(b) $\frac{1}{2} \times 5 \sqrt{ } 2 \times(\sqrt{3}-1) \times \frac{\sqrt{3}+1}{2 \sqrt{2}}$

Correct substitution into $1 / 2$ alsinC

$$
\begin{aligned}
& (\sqrt{3}-1)(\sqrt{3}+1)=3-1(=2) \\
& \quad \text { This must be evaluated at some stage }
\end{aligned}
$$

Clear indication that the expression cancels down to a fraction equivalent to $\frac{5}{2}$
Must show or state cancelling (strand(ii)) for justifying a result.
Cancelling can be done at any stage

Alternative method

Height $=(\sqrt{3}-1) \times \frac{\sqrt{3}+1}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}$
Must get this correct to show explicitly or implicitly (eg could rationalise denominator) that $(\sqrt{3}-1)(\sqrt{3}+1)=3-1(=2)$
$\frac{1}{2} \times 5 \sqrt{2} \times$ their $\frac{1}{\sqrt{2}}$
Blft

Clear indication that the expression cancels down to a fraction equivalent to $\frac{5}{2}$
Must show or state cancelling (strand(ii)) for justifying a result.
Cancelling can be done at any stage

$$
\begin{aligned}
& \text { M6. }(\sqrt{10}=) \sqrt{5} \times \sqrt{2} \text { or } \sqrt{5 \times 2} \\
& \text { or }(\sqrt{20}=) \sqrt{5} \times \sqrt{4} \text { or } \sqrt{5 \times 4} \text { or } 2 \sqrt{5} \\
& \text { or } 3 \sqrt{200} \text { or } 3 \sqrt{100 \times 2} \\
& \text { or } 3 \sqrt{10 \times 10 \times 2} \text { or } 3 \sqrt{25 \times 8} \\
& \text { or } 3 \sqrt{5 \times 5 \times 8} \text { or } 3 \sqrt{25 \times 2 \times 2 \times 2} \\
& \text { or } 3 \sqrt{5 \times 5 \times 2 \times 2 \times 2} \\
& \text { or }(3 \sqrt{20}=) 6 \sqrt{5} \text { or } 3 \times 2 \sqrt{5} \\
& \text { or } 6 \sqrt{50} \text { or } 7 \sqrt{50} \\
& \text { or }(\sqrt{50}=) \sqrt{25} \times \sqrt{2} \text { or } \sqrt{5 \times 5 \times 2} \text { or } 5 \sqrt{2} \\
& \text { oe }
\end{aligned}
$$

$$
30 \sqrt{2} \text { or } 3 \times 10 \sqrt{2}
$$

$$
\text { or } 35 \sqrt{2} \text { or } 7 \times 5 \sqrt{2}
$$

$$
\text { or } 13 \sqrt{50} \text { or } \sqrt{10} \times 13 \sqrt{5}
$$

oe

Additional Guidance

First method mark is for any useful first step

M7.
(a) $\quad(\cos B=) \frac{\left(3 \sqrt{2}^{2}+(\sqrt{2})^{2}-(\sqrt{14})^{2}\right.}{2 \times 3 \sqrt{2} \times \sqrt{2}}$ $(\mathrm{V} 14)^{2}=(3 \mathrm{~V} 2)^{2}+(\mathrm{V} 2)^{2}-2 \times 3 \mathrm{~V} 2 \times \mathrm{V} 2 \times \cos B$

$$
\begin{aligned}
& \frac{18+2-14}{2 \times 3 \times 2} \\
& 14=18+2-12 \times \cos B \\
& \begin{array}{l}
\text { allow one error } \\
\text { oe }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \cos B=\frac{6}{12}=\frac{1}{2} \text { and } B=60^{\circ} \\
& \text { or }(B=) \cos ^{-1}(1 / 2)=60^{\circ}
\end{aligned}
$$

(b) $\sin 60=\frac{\sqrt{3}}{2}$ seen

$$
\frac{1}{2} \times 3 \sqrt{2} \times \sqrt{2} \times \sin 60
$$

oe

$$
\frac{3 \sqrt{3}}{2}
$$

oe

M8.(a) $\sqrt{25} \sqrt{3}$ or $\sqrt{(25 \times 3)}$

$$
\sqrt{5} \times \sqrt{5} \times \sqrt{3} \text { or } \sqrt{\left(5^{2} \times 3\right)}
$$

Alternative Method

$$
(5 \sqrt{3}) 2=25 \times 3
$$

(b) $\frac{6 \sqrt{3}}{3}$ or $\frac{6 \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$ or $\sqrt{12}$
(c) $(5 \sqrt{3}+5 \sqrt{3}+$ their $2 \sqrt{3}) \div 3$

Must use $5 \sqrt{3}+$ not 775
Condone missing brackets.
Working must be seen as answer can be obtained from wrong work.
$4 \sqrt{3}$
ft on their answer to (b) if of form av3 accuracy to 2 dp .

M9.(a) $\quad 9^{\sqrt{2}}$
(b) 10

M10.(a) $\sqrt{4}$

$$
\begin{array}{r}
\frac{2 \sqrt{2}}{\sqrt{2}} \text { or } \frac{\sqrt{8}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { or } \sqrt{\frac{8}{2}} \text { or } \sqrt{\frac{4}{1}} \text { or } \frac{\sqrt{16}}{2} \\
\text { or } \frac{\sqrt{8} \sqrt{2}}{2} \text { or } \frac{2}{1}
\end{array}
$$

2
(b) two correct steps
eg two of:
$\sqrt{4}=2$ or $\sqrt{1}=1$ or cancels $\sqrt{5}$ or combines any two surds
$\sqrt{144}$

$$
\text { oe eg } \sqrt{12} \sqrt{12} \text { or } \sqrt{4} \sqrt{36}
$$

$$
k=12
$$

M11.(a) $\sqrt{8 \times 2}$ or $\sqrt{16}$ or $2 \sqrt{2}(x \sqrt{2})$

$$
\text { or } \sqrt{2 \times 2 \times 2 \times 2} \text { or } \sqrt{4 \times 4}
$$

4

$$
\text { Accept }-4
$$

(b) $\frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

$$
\frac{12 \sqrt{3}}{3}
$$

$4 \sqrt{3}$

M12.
$\sqrt{ } 500=10 \mathrm{~V} 5$ or $\sqrt{ } 45=3 \mathrm{~V} 5$
or for $5 \mathrm{~V} 4 \sqrt{ } 5$ and 2 V 9 V 5
$4 \sqrt{ } 5$

M13.
(a) $\sqrt{2 \times 32}$ or $\sqrt{64}$ or
$(\sqrt{2} \times) 4 \sqrt{2}$ or $2 \sqrt{16}$ or $(\sqrt{2} \times) \sqrt{2} \sqrt{16}$
(b) $\frac{21 \sqrt{7}}{\sqrt{7} \sqrt{7}}$ or $\frac{21 \sqrt{7}}{7}$ or $\frac{21 \sqrt{7}}{\sqrt{49}}$

M14.
$\sqrt{36}$ or 6
or
$(\sqrt{3} \times) 2 \sqrt{3}$
$\frac{1}{5^{2}}$ or $\frac{1}{25}$ or 0.04
$\frac{6}{25}$ is M1M1
0.24

