

2

Topic Test 1 (20 minutes)

Surds (non-calculator) - Higher

1 (a)	Simplify	$\left(\sqrt{15}\right)^4$		[1 mark]
			Answer	
1 (b)	Simplify Give your a	•	m $a\sqrt{3}$, where a is an integer.	[2 marks]
1 (c)	Simplify	$\sqrt{18} \times \sqrt{50}$	Answer	[1 mark]
			Answer	

 $\sqrt{20} + \sqrt{45}$

5√5

[1 mark]

 $\sqrt{65}$

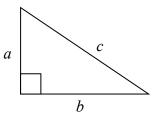
13√5

Circle the value that is equivalent to

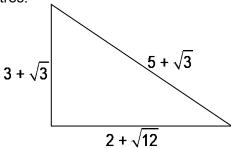
5√15

3	Circle the val	ue that is equiva	lent to 6	√15 ÷ 3-	$\sqrt{5}$		[1 mark]
	2√3		3√3		3√5	3√10	
4	Show that	$\left(\sqrt{3}+\sqrt{27}\right)^2$	can be writter	n as a inte	eger.		[2 marks]
5	Rationalise th	ne denominator a	and simply	<u>24</u> √6			[2 marks]
			Answer				

6	Here are the first 4 terms of a geometric progression					
	-	\sqrt{r}	r	$r\sqrt{r}$	r^2	
6 (a)	Work out the 10 Give your answ		of <i>r</i> .			[1 mark]
			Answer			
6 (b)	When r = 8, wo Give your answ	re integers.	[3 marks]			
			Answer			


7	All lengths are in centimetres.			
	Work out the area of this rectang Give your answer in the form $a +$		re integers	
	u i	byz, miere w and s an	o integere.	[2 marks]
	Γ	$3 + \sqrt{2}$	1	
			$1+2\sqrt{2}$	
			1+2√2	
	-			

Answer _____


 $\,\mathrm{cm^2}$

8 For a right-angled triangle with sides a, b and c, Pythagoras' theorem states that

Is this triangle right-angled?
All lengths are in centimetres.

[4 marks]