Q1.
(a) $\sqrt{8 \times 2}$ or $\sqrt{16}$ or $2 \sqrt{2}(\times \sqrt{2})$

$$
\text { or } \sqrt{2 \times 2 \times 2 \times 2} \text { or } \sqrt{4 \times 4}
$$

4
Accept-4
(b) $\frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

$$
\frac{12 \sqrt{3}}{3}
$$

$$
4 \sqrt{3}
$$

Q2.
(a) $\begin{aligned} & (\mathrm{V} 175=) \mathrm{V}(25 \times 7) \text { or } \sqrt{ } 25 \times \mathrm{V} 7 \\ & \mathrm{~V}(5 \times 5 \times 7) \text { or } \mathrm{V} 5 \times \sqrt{ } 5 \times \sqrt{ } 7\end{aligned}$

M1
5V7
Accept $a=5$ and $b=7$ or $5 \times \sqrt{ } 7$
(b) $\frac{24 \sqrt{3}}{\sqrt{3} \sqrt{3}}\left(=\frac{24 \sqrt{3}}{3}\right)$

8V3

$$
\text { Accept } 8 \times \sqrt{ } 3
$$

Q3.

$$
\begin{aligned}
& \frac{\sqrt{2}}{\sqrt{2}} \text { or } \frac{\sqrt{18}}{\sqrt{18}} \\
& \text { Use of } \\
& \text { or } \sqrt{50}=\sqrt{25 \times 2} \text { or } \sqrt{18}=\sqrt{9 \times 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { eg } \frac{26 \sqrt{2}}{2} \text { or } \frac{12 \sqrt{18}}{18} \\
& \text { eg }^{\frac{12}{3 \sqrt{2}}} \text { or } \frac{4}{\sqrt{2}} \text { or } \frac{4 \sqrt{2}}{2}
\end{aligned}
$$

One term simplified

$$
\begin{aligned}
& \text { ie } 13 \sqrt{2} \\
& 2 \sqrt{2} \\
& 10 \sqrt{2} \text { or } 5 \sqrt{2}
\end{aligned}
$$

Two terms simplified

$$
\begin{aligned}
& \text { ie } 13 \sqrt{2} \\
& 2 \sqrt{2} \\
& 10 \sqrt{2} \text { or } 5 \sqrt{2}
\end{aligned}
$$

$21 \sqrt{2}$ or $a=21$

Q4.
$1: 2: 5$
B2 For any ratio that is one step away from the answer
e.g. $\sqrt{ } 12: 2 \sqrt{ } 12: 5 \sqrt{ } 12$
$\sqrt{ } 1: \sqrt{ } 4: \sqrt{ } 25$
2:4:10
B1 For at least two of the three terms in their simplest form
i.e. two of $2 \sqrt{ } 3: 4 \sqrt{ } 3: 10 \sqrt{ } 3$

B1 For any correct equivalent ratio
e.g. $\sqrt{ } 2: \sqrt{ } 8: \sqrt{ } 50$
$\sqrt{ } 3: \sqrt{ } 12: \sqrt{ } 75$

Q5.

$$
\begin{aligned}
\left(w^{2}=\right) 162 \text { or }\left(\begin{array}{l}
\left.h^{2}=\right) 150 \\
\\
\text { Allow M1 for } 81 \times 2-25 \times 6
\end{array}\right.
\end{aligned}
$$

$\sqrt{12}$
$2 \sqrt{3}$

$$
\text { ft their } \sqrt{12} \text { if possible }
$$

Q6.
$\sqrt{10} \sqrt{15}-\sqrt{10} \sqrt{3}(+) \sqrt{2} \sqrt{15}-\sqrt{2} \sqrt{3}$
or better ...
Allow one error (sign or term) in the expansion

Eliminating the two 'middle' terms
These must be the correct two middle terms
$\sqrt{10} \sqrt{15}$ simplified to $5 \sqrt{6}$
$4 \sqrt{6}$

Alternative method 1
$(\sqrt{5} \sqrt{2}+\sqrt{2})(\sqrt{5} \sqrt{3}-\sqrt{3})$
or
$\sqrt{5} \sqrt{5} \sqrt{2} \sqrt{3}+\sqrt{5} \sqrt{2} \sqrt{3}-\sqrt{2} \sqrt{5} \sqrt{3}-\sqrt{2} \sqrt{3}$
or better ...
Allow one error (sign or term) in the expansion

Eliminating the two 'middle' terms
These must be the correct two middle terms
$\sqrt{5} \sqrt{5} \sqrt{2} \sqrt{3}$ simplified to $5 \sqrt{6}$
$4 \sqrt{6}$

Alternative method 2

$$
(\sqrt{5} \sqrt{2}+\sqrt{2})(\sqrt{5} \sqrt{3}-\sqrt{3})
$$

$\sqrt{2} \sqrt{3}(\sqrt{5}+1)(\sqrt{5}-1)$
$\sqrt{2} \sqrt{3} \times(5-1)$
$4 \sqrt{6}$

Q7.
(a) $\sqrt{4}$

$$
\begin{aligned}
& \frac{2 \sqrt{2}}{\sqrt{2}} \text { or } \frac{\sqrt{8}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { or } \sqrt{\frac{8}{2}} \text { or } \sqrt{\frac{4}{1}} \text { or } \frac{\sqrt{16}}{2} \\
& \text { or } \frac{\sqrt{8} \sqrt{2}}{2} \text { or } \frac{2}{1}
\end{aligned}
$$

2
(b) two correct steps
eg two of: $\sqrt{4}=2$ or $\sqrt{1}=1$ or cancels $\sqrt{5}$ or combines any two surds
$\sqrt{144}$

$$
\begin{aligned}
& \text { oe eg } \sqrt{12} \sqrt{12} \text { or } \sqrt{4} \sqrt{36} \\
& k=12
\end{aligned}
$$

Q8.
(a) 4
(b) $2+3^{\sqrt{2}}+3^{\sqrt{2}}+9$ Allow one error
$11+6 \sqrt{2}$

Q9.
(a) $\sqrt{2 \times 32}$ or $\sqrt{64}$ or

8
(b) $\frac{21 \sqrt{7}}{\sqrt{7} \sqrt{7}}$ or $\frac{21 \sqrt{7}}{7}$ or $\frac{21 \sqrt{7}}{\sqrt{49}}$
$3 \sqrt{7}$

Q10.

$$
\begin{aligned}
& \frac{16}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { or } \frac{16 \sqrt{2}}{\sqrt{4}} \text { or } \frac{16 \sqrt{2}}{2} \\
& \text { or } \sqrt{\frac{256}{2}} \text { or } \sqrt{128} \text { or } \sqrt{64} \times \sqrt{2}
\end{aligned}
$$

oe
$8 \sqrt{2}$
do not ignore further work

$$
25-5 \sqrt{3}-5 \sqrt{3}+3
$$

(b) or $25-10 \sqrt{3}+3$
allow one error in four terms
$28-10 \sqrt{3}$
or $a=28$ and $b=10$

Q11.
15-3 ${ }^{\sqrt{3}}-5^{\sqrt{3}}+\begin{aligned} & \sqrt{3} \\ & \text { oe }\end{aligned}{ }^{\sqrt{3}}{ }^{2}$
Must have 4 terms with at least 3 correct for M1
Terms may be in box method but must have correct signs
$18-8^{\sqrt{3}}$
$9-4 \sqrt{3}$

Do not award A1 if further incorrect work, eg 9-4 $4^{\sqrt{3}}=$ $5^{\sqrt{3}}$
ft if M awarded and at most one error, ie 3 correct terms with no further errors in collecting or 4 correct terms and one error in collecting

Additional Guidance

$15-3^{\sqrt{3}}-5^{\sqrt{3}}-\sqrt{9}$M1
$12-8^{\sqrt{3}}$AO

$$
6-4^{\sqrt{3}}
$$

$$
15+3^{\sqrt{3}}-5^{\sqrt{3}}+\sqrt{9}
$$

M1

$$
18-2^{\sqrt{3}}
$$

AO

$$
9-\sqrt{3}
$$

$$
15-3^{\sqrt{3}}-5^{\sqrt{3}}+\sqrt{3}
$$

M1

$$
15-7^{\sqrt{3}}
$$

AO

$$
7 \frac{1}{2}-\frac{7}{2} \sqrt{3}
$$

$$
15-3^{\sqrt{3}}-5^{\sqrt{3}}+\sqrt{9}
$$

M1

$$
18+8^{\sqrt{3}}
$$

$$
9+4^{\sqrt{3}}
$$

AO

$$
\frac{15-3 \sqrt{3}-5 \sqrt{3}+3}{2}
$$

$$
2\left(15-3^{\sqrt{3}}-5^{\sqrt{3}}+3\right)
$$

M1

$$
\begin{aligned}
& 30-6^{\sqrt{3}}-10^{\sqrt{3}}+6 \\
& 36-16^{\sqrt{3}}
\end{aligned}
$$

$$
15+3^{\sqrt{3}}-5^{\sqrt{3}}-\sqrt{9}
$$

	5	$-\sqrt{3}$
3	15	$-3^{\sqrt{3}}$
$-\sqrt{3}$	$-5^{\sqrt{3}}$	-3

	5	$-\sqrt{3}$
3	15	$3^{\sqrt{3}}$
$-\sqrt{3}$	$5^{\sqrt{3}}$	3

Q12.
Alternative method 1
Correct order and all three correct values $\sqrt{20}, \sqrt{24}$ and $\sqrt{28}$
B2 three correct values $\sqrt{24}, \sqrt{28}$ and $\sqrt{20}$
or $\sqrt{20}$ and $\sqrt{24}$
or $\sqrt{20}$ and $\sqrt{28}$
or $\sqrt{24}$ and $\sqrt{28}$
B1 $\sqrt{20}$ or $\sqrt{24}$ or $\sqrt{28}$

Alternative method 2
Correct order and all three correct values $2 \sqrt{5}, 2 \sqrt{6}$ and $2 \sqrt{7}$
B2 three correct values $2 \sqrt{6}, 2 \sqrt{7}$ and $2 \sqrt{5}$
or $2 \sqrt{5}$ and $2 \sqrt{6}$

$$
\begin{aligned}
& \text { or } 2 \sqrt{5} \text { and } 2 \sqrt{7} \\
& \text { or } 2 \sqrt{6} \text { and } 2 \sqrt{7} \\
& \text { B1 } 2 \sqrt{5} \text { or } \frac{10 \sqrt{5}}{5} \text { or } 2 \sqrt{6} \text { or } 2 \sqrt{7}
\end{aligned}
$$

Alternative method 3

Correct order and all three correct values 20, 24 and 28
B2 three correct values 24, 28 and 20
or 20 and 24
or 20 and 28
or 24 and 28
B1 20 or $\frac{100}{5}$ or 24 or $4 \times 3 \times 2$
or 12×2 or 8×3 or 4×6 or 28

Additional Guidance
Correct order is $\frac{10}{\sqrt{5}}, 2 \sqrt{3} \times \sqrt{2}, \sqrt{\frac{56}{2}}$
20, 24, 28 using Alt 3

B1 values using Alt 3 can be seen inside square root

$$
\sqrt{\frac{100}{5}} \text { or } \sqrt{4 \times 3 \times 2} \text { or } \sqrt{12 \times 2} \text { or } \sqrt{8 \times 3} \text { or } \sqrt{4 \times 6}
$$

Q13.
Alternative method 1

$$
\begin{aligned}
& \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \text { or } \frac{5 \sqrt{3}}{3} \\
& \text { oe } \\
& 5-\sqrt{3} \sqrt{6 \frac{3}{4}}=3 k
\end{aligned}
$$

$\left(\sqrt{6 \frac{3}{4}}=\sqrt{\frac{27}{4}}=\right)$
$\frac{\sqrt{27}}{2}$ or $\frac{3 \sqrt{3}}{\sqrt{4}}$ or $\frac{3 \sqrt{3}}{2}$
$\left(\frac{5 \sqrt{3}}{3}-\frac{3 \sqrt{3}}{2}=\right)$
$\frac{10 \sqrt{3}}{6}-\frac{9 \sqrt{3}}{6}$
oe
Dep on M1 M1
Any correct common denominator with at least one numerator correct

$$
\frac{10 \sqrt{3}}{2}-\frac{9 \sqrt{3}}{2}=3 k
$$

$\frac{1 \sqrt{3}}{6}$ or $\frac{\sqrt{3}}{6}$ or $\frac{1}{6} \sqrt{3}$
oe but must be $k \sqrt{3}$

Alternative method 2
$\left(\sqrt{6 \frac{3}{4}}=\sqrt{\frac{27}{4}}=\right)$
$\frac{\sqrt{27}}{2}$ or $\frac{3 \sqrt{3}}{\sqrt{4}}$ or $\frac{3 \sqrt{3}}{2}$

$$
\begin{aligned}
& \left(\frac{5 \sqrt{3}}{3}-\frac{3 \sqrt{3}}{2} \Rightarrow\right) \\
& \frac{10}{2 \sqrt{3}}-\frac{9}{2 \sqrt{3}} \text { or } \frac{1}{2 \sqrt{3}}
\end{aligned}
$$

oe
Any correct common denominator with at least one numerator correct
ft their $\frac{3 \sqrt{3}}{2}$
$\frac{1}{2 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
oe
$\frac{1 \sqrt{3}}{6}$ or $\frac{\sqrt{3}}{6}$ or $\frac{1}{6} \sqrt{3}$
oe but must be $k \sqrt{3}$

Additional Guidance
Alt 1 first M1 and alt 2 third M1
oe Multiplying by eg $\frac{2 \sqrt{3}}{2 \sqrt{3}}$

Q14.

$$
\begin{aligned}
& \frac{10}{3 \sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \text { or } \frac{10 \sqrt{5}}{15} \\
& \begin{aligned}
\frac{10}{3 \sqrt{5}} \times \frac{3 \sqrt{5}}{3 \sqrt{5}} \text { or } \frac{30 \sqrt{5}}{45} \\
\text { or } \frac{\sqrt{20}}{3}
\end{aligned} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { eg } \frac{10}{\sqrt{45}} \text { is Moltiply numerator and denominator } \\
& \frac{10}{\sqrt{45}} \times \frac{\sqrt{45}}{\sqrt{45}} \text { is } \mathrm{M1}
\end{aligned}
$$

$\frac{2 \sqrt{5}}{3}$

Q15.
Alternative method 1

$$
(\sqrt{12}=) 2 \sqrt{3}
$$

$\left(\frac{15}{\sqrt{3}}=\right) \frac{15 \sqrt{3}}{\sqrt{3} \sqrt{3}}$ or $\frac{15 \sqrt{3}}{3}$ or $5 \sqrt{3}$
$7 \sqrt{3}$ or $a=7, b=3$

Alternative method 2

$$
\frac{\sqrt{36}+15}{\sqrt{3}}\left(=\frac{21}{\sqrt{3}}\right)
$$

$$
\begin{aligned}
& \frac{21}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \text { or } \frac{21 \sqrt{3}}{3} \\
& 7 \sqrt{3} \text { or } a=7, b=3
\end{aligned}
$$

Q16.

$$
7 \sqrt{7}
$$

