M1.

Alternative method 1

$£ 2 £ 2,20 p, 20 p, 20 p$
or $£ 2, £ 2,50 p, 5 p, 5 p$
or $£ 2, £ 1, £ 1,50 p, 10 p$
£1, £1,50p, 10p, 10p
or $£ 2,20 p, 20 p, 20 p, 10 p$
or $£ 2,50$ p, 10 p, 5 p, 5 p
£2, £2, 20p, 20p, 20p, 10p
$£ 4.70$
Correct money notation

Alternative method 2

$4.60-2.70$ or 1.90
oe
$£ 2$ and 10p identified
$£ 4.60+10 \mathrm{p}$
or $£ 2.70+£ 2$
Allow mixed units

M2.
(a) $1000 \div 42$ or $23.8(\ldots)$ or $23^{\frac{17}{21}}$

$$
\text { or } \frac{500}{21}
$$

(b) 34

> ft their answer to (a)

M3.
$7500-1875$ or 5625
their $5625 \div 36$
156.25

M4.

Alternative method 1

$$
\begin{aligned}
300 \times 0.19 \text { or } 57 & \\
& \text { oe } \\
& 300 \times 19 \text { or } 5700
\end{aligned}
$$

$\frac{5}{100} \times$ their 57 or 2.85
or 1.05 seen

> oe
$\frac{5}{100} \times$ their 5700 or 285 or 1.05 seen

M1dep
their 57 + their 2.85
or their 57×1.05
their $5700+$ their 285
or their 5700×1.05 or 5985
M1dep
59.85

Alternative method 2

$\frac{5}{100} \times 0.19$
or 0.0095
or 1.05 seen
oe
$\frac{5}{100} \times 19$
or 0.95
or 1.05 seen
their $0.0095+0.19$
or 1.05×0.19
or 0.1995

> oe
their $0.95+19$
or 1.05×19
or 19.95
their 0.1995×300
their 19.95×300 or 5985
or $1.05 \times 19 \times 3$

Alternative method 3

$\frac{5}{100} \times 300$
or 15
or 1.05 seen
oe
M1
their $15+300$
or 1.05×300
or 315
oe
their $0.19 \times$ their 315
$19 \times$ their 315 or 5985
M1dep
59.85

Additional Guidance

Pick out any correct step, e.g.
$300 \div 19 \times 1.05$
M1M1M0A0
$300 \times 0.5 \times 0.19$
M1MOMOAO
Beware, 10% of $19=1.90,5 \%$ of $19=0.95,1.90+0.95=2.85$ (Alt 2)
M1MOMOAO
If a choice of methods is seen, mark the best

M5.(a) 46
(b) 1.5 seen or implied
or 14 seen
oe
28×1.5
or $28+14$
Attempt to multiply speed by time
eg 28×1.3 or 36.4
or 90×28 or 2520
or 130×28 or 3640

42

M6.(a) Kilogram(s), Tonne(s), Ton(s) or Stone(s)
Accept T, kg
Ignore any numerical estimate alongside correct unit eg accept 2 tonnes
(b) Centimetre(s), millimetre(s) or inch(es)

Accept cm, mm or in Ignore any numerical estimate alongside correct unit eg accept 15 mm
or $400 \div 4$ or $400-200-100$
or $400-300$ or 100
or $400 \div 8$
or 400-200-100-50
or 400-350
oe
One correct step
Working may be on diagram

50

Additional Guidance

$400-100-100-100=100 \quad$ is MO AO
100 as final answer with no working shown
is MO AO
(b) $400 \times 2 \times 2$ or 400×4 or 800×2
or 400×4
or 1600
or 0.4
oe
1.6

SC1 for a correct conversion for their 1600

Additional Guidance

$1200 \mathrm{ml}=1.2 \mathrm{l}$
is SC1

$$
\begin{array}{ll}
1000 \mathrm{ml}=1 \mathrm{l} \text { with } 1 \text { on answer line } & \text { is M1 A0 } \\
1 \mathrm{l}=1000 \mathrm{ml} \text { alone } & \text { is M0 A0 }
\end{array}
$$

M8.2.85 $\times 0.72 \times 0.9$

$$
\begin{aligned}
& o e \\
& 285 \times 72 \times 90
\end{aligned}
$$

1.8(468)

1846800
m^{3}
cm3

Additional Guidance

Accept any rounding to 2 sf or more without working seen, eg 1.85 or 185000

M9.5 miles $=8 \mathrm{~km}$ seen or implied
oe
$95 \times$ their $\frac{5}{8}$

$$
60 \times \text { their } \frac{8}{5}
$$

Alternative Method 1

```
95\times5 or 475
or 95 % 8 or 11.875
    60\times8 or 480
    or 60 }\div5\mathrm{ or 12
```

$95 \times 5 \div 8$

$$
60 \times 8 \div 5
$$

59.(...) and yes

96 and yes

Alternative Method 2

95×5 or 475
or 60×8 or 480

$$
\begin{aligned}
& 95 \div 8 \text { or } 11.875 \\
& \text { or } 60 \div 5 \text { or } 12
\end{aligned}
$$

95×5 or 475
and 60×8 or 480

$$
\begin{aligned}
& 95 \div 8 \text { or } 11.875 \\
& \text { and } 60 \div 5 \text { or } 12
\end{aligned}
$$

Alternative Method 3

$$
\begin{aligned}
& 95 \div 60 \text { or } 1.5 \ldots \\
& \text { or } 8 \div 5 \text { or } 1.6 \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { or } 5 \div 95 \text { or } 0.63 \ldots \\
& \hline 0.62(5)
\end{aligned}
$$

$95 \div 60$ or 1.5...
and $8 \div 5$ or 1.6

$$
\begin{aligned}
& 60 \div 95 \text { or } 0.63 \ldots \\
& \text { and } 5 \div 8 \text { or } 0.62(5)
\end{aligned}
$$

1.5... and 1.6 and yes
0.63... and 0.625 and yes

Additional Guidance

On alternative method 2 or $3,11.875$ can be $11.8(. .$.$) or 11.9$
Throughout all methods students can use 2.5 and 4 in place of 5 and 8 for the first B1 (or 1.25 and 2, 10 and 16, etc - might be on the scale)

M10.
(a) (i) 1014

Accept 0945 (from Newcastle)
(ii) 34
(b) $12+10+7$ or 29

61 - their $29(=32)$

Attempt to build up to 32
Adding 12's,10's, 7's with at least one total between 26 and 36
$2,3,1$
Allow Adults $£ 12, £ 12$, Child $£ 10, £ 10, £ 10$, Senior $£ 7$ SC3 for $£ 24, £ 30, £ 7$

Alternative

Multiples of 12,10 or 7 seen

Any combination of multiples of 12,10 and 7

Combination of multiples of 12,10 or 7 with a total between 55 and 65
$2,3,1$
Allow Adults $£ 12, £ 12$, Child $£ 10, £ 10, £ 10$, Senior $£ 7$ SC3 for $£ 24, £ 30, £ 7$

M11.(a) 20(p)
Accept $£ 0.20$ (p)
(b) $10 \times(25-$ their 20$)$
or $10 \times 25-10 \times$ their 20 oe
ft their 20 from (a) if < 25

50(p)
Accept $£ 0.50$ (p)

M12.(a) $2 \times 2(.00)+1.25 o e$
(b) 10 - their 5.25

4.75

ft their 5.25
$\mathbf{M 1 3 . 8 0 + 4 5 + 7 0}$

$$
200-(80+45+70)
$$

$0.8+0.45+0.7$

$$
2-(0.8+0.45+0.7)
$$

195

Yes and 195 (<200)
1.95

$$
0.05
$$

Yes and 1.95 (<2)

> M1 awarded and correct decision for their total
> SC1 for any correct conversion
> eg 2 metres $=200 \mathrm{~cm}$
> or $80 \mathrm{~cm}=0.8$ metres
> or $45 \mathrm{~cm}=0.45$ metres
> or $70 \mathrm{~cm}=0.7$ metres

Q1 ft
[3]

M14.(a) South

Accept S

B1
(b) Plymouth
(c) Alderney

M15.2.2 pounds $=1000$ grams seen or implied
May be implied from working
$1 \div 2.2$ ($=0.45 \mathrm{~kg}$) (= 1 pound)

```
(1 pound =) \(1000 \div 2.2\)
(= 454 ... grams)
    \((1\) gram \(=) 2.2 \div 1000(=0.0022\) pound \()\)
or \(1 \div 2.2 \times 1000\)
    \(1 \div 2.2 \times 0.5\) ( \(=0.227 \ldots\) grams)
[454, 455] or 450
    [0.227, 0.2275 ] or 0.225 or 0.230
```

```
\(\left(\frac{1}{2}\right.\) pound \(\left.=\right) 1000 \div 2.2 \div 2\)
    100 grams \(=2.2 \div 1000 \times 100\)
    ( \(=0.22\) pounds)
(= 227.2 ... grams)
    or 200 grams \(=2.2 \div 1000 \times 200\) ( \(=0.44\) pounds)
```

[227, 227.5] or 225 or 230
or 250 grams $=2.2 \div 1000 \times 250$ (= 0.55 pounds) or 500 grams $=2.2 \div 1000 \times 500$ (= 1.1 pounds)
[227, 227.5] or 225 or 230 and 250 g stated 0.55 (pounds) and 250 g stated 0.44 (pounds) and 250 g stated SC3 for e.g. 0.227 and 250 g stated

Alternative method

$$
\begin{aligned}
& 2 \text { pounds }=1000 \text { grams seen or implied } \\
& \qquad \begin{array}{l}
\text { May be implied from working } \\
\\
1 \div 2(=0.5 \mathrm{~kg})(=1 \text { pound })
\end{array}
\end{aligned}
$$

```
(1 pound =) \(1000 \div 2\)
(= 500 grams)
    (1 gram \(=) 2 \div 1000\) ( \(=0.002\) pound)
or \(1 \div 2 \times 1000\)
(= 500 grams)
    \(1 \div 2 \times 0.5\) ( \(=0.25\) grams \()\)
```

```
(}\frac{1}{2}\mathrm{ pound =) 1000 }\div2\div
(= 250 grams)
    100 grams = 2 \div1000 }\times100\mathrm{ (= 0.2 pounds)
    or 200 grams =2\div1000 }\times200\mathrm{ (= 0.4 pounds)
```

$$
\begin{aligned}
& \text { or } 250 \text { grams }=2 \div 1000 \times 250 \text { (= } 0.5 \text { pounds) } \\
& \text { or } 500 \text { grams }=2 \div 1000 \times 500 \text { (}=1 \text { pound) }
\end{aligned}
$$

SC3 for e.g. 0.25 and 250 g stated

