M1.
$3 x-(x-5)$

> Condone omission of brackets
$2 x+5=17$

6
SC2 11

Alternative 1

$23 x=217 \times 2 x-5$

$$
3 x=12+x
$$

6
SC2 11

Alternative 2

Substitutes a value for xand evaluates correctly as a power of 2.

Substitutes a different value for ænd evaluates correctly as a power of 2 which is closer to 17.

6
SC2 11

M2.
$x^{-\frac{2}{3}}$ or $a=-\frac{2}{3}$

$$
\text { B2 }\left(x^{\frac{-1}{3}}\right)^{2} \text { or }\left(x^{2}\right)^{\frac{-1}{3}} \text { or }\left(x^{\frac{2}{3}}\right)^{-1} \text { or }
$$

$$
\begin{aligned}
& \left(x^{-2}\right)^{\frac{1}{3}} \text { or }\left(x^{\frac{1}{3}}\right)^{-2} \text { or } \frac{1}{x^{\frac{2}{3}}} \text { or }-\frac{2}{3} \\
& \text { B1 }(\sqrt[3]{x})^{2} \text { or }\left(\sqrt[3]{x^{2}}\right)^{-1} \text { or }\left(\frac{1}{x^{2}}\right)^{\frac{1}{3}} \\
& \text { or } \frac{1}{\left(x^{2}\right)^{\frac{1}{3}}} \text { or }\left(\frac{1}{\sqrt[3]{x}}\right)^{2} \\
& \text { or base } x \text { with any negative index. }
\end{aligned}
$$

M3. Correct evaluation of a relevant power of 2 or 16

$$
\text { eg } 16^{\frac{1}{2}}(\pm) 4 \text { or } 162=256 \text { or } 24=16 \text { or }
$$

or $4 c=d$

$$
16^{\frac{1}{4}}=(\pm) 2 \text { or } 161=16 \text { or } 160=1
$$

One correct pair of answers
A correct answer is such that $d=4 c$

A second correct pair of answers

$$
\begin{aligned}
& \text { eg } \begin{aligned}
c & =0, d
\end{aligned}=0 \\
& c=1, d=4 \text { or } c=-1, d=-4 \\
& c=2, d=8 \text { or } \quad c=\frac{1}{8}, d=\frac{1}{2} \text { etc ... }
\end{aligned}
$$

M4.Sequence continued correctly
A calculation that leads to x if evaluated correctly or extending the sequence to at least row 3
224 or 412
16×324
644

16777216
their value in standard form
or their value to 3 s.f.
$1.67(77216) \times 107$
or 1.6×107
or 1.7×107
or 16800000
For standard form allow rounding or truncation
1.68×107

M5. Correct cubing of any integer [25,30]

$$
\begin{aligned}
& \text { Note: } 253=15625 \\
& 263=17576 \\
& 273=19683 \\
& 283=21952 \\
& 293=24389 \\
& 303=27000
\end{aligned}
$$

