M1.
(a) A and D
(b) No and a number cannot be both odd and even or No and a number cannot be both square and prime or No and a number cannot be two-digit, even and prime
oe Accept eg
No and a number cannot be both A and B
(c) 16 or 36 or 64 and A, D, E or 25 or 49 or 81 and B, D, E or 11 or 13 or 17 or 19 or 23 or 29 or 31 or 37 or 41 or 43 or 47 or 53 or 59 or 61 or 67 or 71 or 73 or 79 or 83 or 89 or 97 and B, C, E

```
B1 Any of the correct possible numbers (listed for B2) but with incorrect properties
or
any even square number and \(A, D\)
or
any odd square number and \(B, D\)
or
any prime number \(>2\) and \(B, C\)
or
2 and \(A, C\)
```

M2.

M3.
4

M4.
No and shows an example of an even multiple of $3+$ a multiple of $2=$ an even number

$$
\text { eg No and } 6+4=10
$$

M5.

$$
x=81 \text { and } \quad y=19
$$

B1 100- (a square number) correctly evaluated
or 100 - (a prime number) correctly evaluated
or A list of square numbers up to and including 81 with one error or omission and a list of prime numbers up to and including 19 with one error or omission
or A correctly evaluated trial of a square number plus a prime number.
e.g. $49+53=102$

Additional Guidance

Condone $x=19$ and $y=81$
$x=92$ and $\quad y=19$
$x=9$ and $\quad y=19$ with $92=81$ or $92+19$ or $81+19$ in working
$x=9$ and $\quad y=19$ without working

49 and 51 implies 100 - (a square number) correctly evaluated

91 and 9 implies 100 - (a square number) correctly evaluated
$2(x) 2(x) 2(x) 5(x) 5$
Any order allow on prime factor tree or repeated division
23×52
Strand (i) correct index notation
Any order
ft correct product of prime numbers in index form from their working

Q1ft

Additional Guidance

$23+52$
M1A1Q0
$(200=) 2(x) 2(x) 5(x) 5$ and 22×52 is minimum Q1ft
$200 \div 2=100$
$2(x) 10(x) 10$ as a product or shown on a correct section of factor tree
$20(x) 5(x) 2$ as a product or shown on a correct section of factor tree
$20(\times) 5(\times) 4$ as a product or shown on a correct section of factor tree
(b) 4 and 60 and 12 and 20

B1 one correct
or one correct and one incorrect
or two correct and one incorrect
Any indication

M7.
(a) $2(x) 66$ or $3(x) 44$ or $2(x) 6(x) 11$
or $3(x) 4(x) 11$ or $12(x) 11$
or $2(x) 2(x) 33$ or $2(x) 3(x) 22$
Any order
Allow on prime factor tree or repeated division.
Condone $2(x) 66(x) 1$ etc
$2 \times 2 \times 3 \times 11$
or $22 \times 3 \times 11$
Any order

Additional Guidance

2, 2, 3, 11
(b) Alternative method 1
$2(x) 5(x) 11=110$

22
SC1 11

Alternative method 2

List of factors of 110 and 132 up to 22 with 2 errors or omissions
(1), $2,5,10,11,22(55,110)$
and
(1), 2, 3, 4, 6, 11, 12, 22
$(33,44,66,132)$

22
SC1 11

Additional Guidance

($1,55,110$) and ($1,33,44,66,132$) are not omissions

M8.
(a) Substitutes and evaluates correctly to show that the answer is even

$$
\begin{array}{ll}
\text { e.g. } \\
52+32=34 & \text { or } 32+52=34 \\
25+9=34 & \text { or } 9+25=34 \\
72+32=58 & \text { or } 32+72=58 \\
49+9=58 & \text { or } 9+49=58 \\
72+52=74 & \text { or } 52+72=74 \\
49+25=74 & \text { or } 25+49=74 \\
\text { lgnore fw }
\end{array}
$$

Additional Guidance

One correct example required with or without incorrect examples e.g. $22+32=13,52+32=34$
(b) Substitutes and evaluates correctly to show that the answer is odd

$$
\begin{array}{ll}
\text { e.g. } 32+22 & \\
=139+4= & \text { or } 22+32=13 \\
1352+22 & \text { or } 4+9=13 \\
=2925+4 & \text { or } 22+52=29 \\
=2972+ & \text { or } 4+25=29 \\
22=5349 & \text { or } 22+72=53 \\
+4=53 & \text { or } 4+49=53 \\
\text { lgnore fw }
\end{array}
$$

Additional Guidance

One correct example required with or without incorrect examples e.g. $22+32=13,52+32=34$
(b) 8

M10.(a) 36
(b) Yes and 3×40 and 4×30

Yes and 12×10 or
Yes and in 12 times table or
Yes and 3 and 4 are factors of 120 or
Yes and both lists correctly written out up to 120 or
No because 20 is missing
oe
eg it divides by 12
it's in both times tables
3 and 4 go into 120

M11.
4961

$$
\begin{array}{lllll}
\text { B2 } & 2561 & 3661 & 6461 & 8161 \\
3601 & 3602 & 4901 & 4902 \\
6401 & 6402 & 8102 \\
6149
\end{array}
$$

M12.
(a) Correct set of four different prime numbers

B1

all numbers prime and the calculation correct, but with repeated numbers used
or
all numbers different and three of the four numbers prime and the calculation correct
or
at least four prime numbers identified with no incorrect numbers
or
at least five prime numbers identified with one incorrect number
(b) 2 is the only even prime number, so the sum must be even

> oe Strand (ii)

Q1
2 is the only even prime number
or
(with 2 in) the sum would be even
or
even + odd + odd = even
or

2 can't be the answer (as it's the smallest prime number)
or
one or more correct numerical example(s) using 2, with no incorrect examples

M13.

Odd ticked

Odd \times odd $=$ odd or $a^{2}=$ odd
Even \times even $=$ even or $b^{2}=$ even
Odd plus even = odd
Strand (ii). Clear explanation.
This is not dependent on the correct box being ticked.
Q1
[2]

M14.
(a) 2×25 or 5×10
oe eg $50 \div 2=25$ or branches on a prime factor tree or any indication eg $(2,25)$ of a 'product' that equals 50 or $2,5,5$ or 2,5 and 5 shown as the last numbers of a prime factor tree (allow 1s)

$$
2 \times 5 \times 5 \quad 2(1) \times 5^{2}
$$

(b) List of multiples of 40 and 50 to at least 80, 120 and 100, 150

Venn diagram (ft their prime factors for 50 in (a))

$$
\begin{aligned}
& 2^{3} \times 5^{2} \text { or } 200 \\
& \quad \text { oe SC1 any multiple of } 200
\end{aligned}
$$

M15.
4 packs of bread rolls and
25 packs of sausages

> B2 $4 n$ packs of bread rolls and $25 n$ packs of sausages where n is an integer >2 e.g. 8 packs of bread rolls and 50 packs of sausages
> B1 Works out a common multiple of 8 and 25
> e.g. $18,80,160,200$ and
> $25,50,100,200,250$
> e.g. $8 \times 25=200$
> e.g. $2^{3} \times 5^{2}=200$
> or
> Indicates a valid number of bread rolls and sausages
> i.e. 100 m bread rolls and
> 200 m sausages
> where m is an integer >0
> SC2 25 packs of bread rolls and
> 4 packs of sausages

M16.(a) 35
any clear indication
(b) 12
any clear indication
(c) 48
any clear indication
(b) 20
(c) 16
(d) 13

M18.(a) 6
(b) Subtract 5

$$
\begin{aligned}
& \text { Accept }-5 n+36
\end{aligned}
$$

Additional Guidance

number - 5
$n-5$
Going in 5s B1
Going down in 5 s
Take $5 \times$ B1

The first number - 5
$n=-5$
$-5 n$
(c) -4

Additional Guidance

negative 4
minus 4
(d) True

False
False
B1 each

