Mark schemes

Q1.
Correct evaluation of a relevant power of 2 or 16

$$
\text { eg } 16 \xlongequal{\frac{1}{2}}(\pm) 4 \text { or } 16=256 \text { or } 24=16 \text { or }
$$

or $4 c=d$

$$
16^{\frac{1}{4}}=(\pm) 2 \text { or } 161=16 \text { or } 160=1
$$

One correct pair of answers
A correct answer is such that $d=4 c$

A second correct pair of answers

$$
\begin{aligned}
e g c=0, d & =0 \\
c & =1, d=4 \text { or } c=-1, d=-4 \\
c=2, d & =8 \text { or } \quad c=\frac{1}{8}, d=\frac{1}{2} \text { etc ... }
\end{aligned}
$$

Q2.
(a) $81^{\frac{1}{\frac{1}{4}}}$ or $\frac{1}{\sqrt[4]{81}}$ or $\sqrt[4]{\frac{1}{81}}$

$$
\begin{aligned}
& \text { or } 3^{-1} \text { or } 9^{-\frac{1}{2}} \\
& \text { or } 81^{\frac{1}{4}}=3 \text { or } \sqrt[4]{81}=3 \\
& \text { or } 34=81
\end{aligned}
$$

$\frac{1}{3}$

Additional Guidance
3 without $81^{\frac{1}{4}}$ or $\sqrt[4]{81}$
(b) Alternative method 1
(16 = 24
or (23) $2 x$ or 26
oe with consistent base 2
(16 =) 24 and (2$)^{22 x}$ or $2^{6 x}$
$2^{4+6 x}$ or $2^{2(2+3 x)}$

Alternative method 2
$((4 \times 8 x) 2=)(22 \times 23 x)$
$\left(2^{2+3 x}\right) 2$

Q3.
16

$$
\begin{aligned}
& \text { B1 for } 64^{\frac{1}{3}}=4 \\
& \text { B1 for } \sqrt[3]{64 \times 64} \\
& \text { B1 for }\left(64^{\frac{1}{3}}\right)^{2} \text { oe } \\
& \text { B1 for }\left(64^{2}\right)^{\frac{1}{3}} \text { oe }
\end{aligned}
$$

Q4.
(a) $\frac{1}{27}$

B2 for 27 or $\frac{1}{3}$ or $\frac{1}{729}$ or 27^{-1}
B1 for 3 or 729 or $\quad 9^{\frac{1}{\frac{3}{2}}}$ or -27
(b) $\quad 2^{3 m}\left(=2^{m^{2}}\right)$ or $\left(2^{3}\right)^{m}\left(=2^{m^{2}}\right)$
oe

$$
\begin{aligned}
& m 2=3 m \text { or } m 2-3 m=0 \operatorname{or} m(m-3)=0 \\
& \text { or }(m=) 0 \text { or }(m=) 3 \\
& \text { oe }
\end{aligned}
$$

0 and 3

Q5.
$\frac{1}{3}$ or 0.33...

$$
\begin{aligned}
& \text { B1 } 3^{-1} \text { or } \frac{\sqrt{1}}{3} \text { or }\left(\frac{1}{9}\right)^{\frac{1}{2}} \text { or } \sqrt{\frac{1}{9}} \\
& \frac{1}{9^{\frac{1}{2}}} \text { or } \frac{1}{\sqrt{9}}
\end{aligned}
$$

Additional Guidance

For B1 responses ${ }^{\frac{1}{2}}$ can be 0.5
For final two B1 responses 1 can be $\sqrt{1}$

Q6.
(a) m^{3}

Do not accept $m \times m \times m$
(b) $3 \times 5+5 \times \sqrt{2}-3 \times \sqrt{2}-\sqrt{2} \times \sqrt{2}$
or $3 \times 5+2 \sqrt{2}-\sqrt{2} \sqrt{2}$
or $13+5 \sqrt{2}-3 \sqrt{2}$
oe 4 terms or correct combination of 3 terms needed. If 4 terms given, 3 must be correct for M1
Allow in 'box method' or FOIL but watch out for correct signs (still allow one error).

$$
13+2 \sqrt{2}
$$

Additional Guidance
If answer correct allow 2 marks.
$15+5 \sqrt{ } 2-3 \sqrt{ } 2+4$
$19+2 \sqrt{ } 2$

\times	3	$\sqrt{ } 2$
5	15	$5 \sqrt{ } 2$
$\sqrt{ } 2$	$3 \sqrt{ } 2$	2

$17+8 \sqrt{ } 2$

\times	3	$\sqrt{ } 2$
5	15	$5 \sqrt{ } 2$
$-\sqrt{ } 2$	$3 \sqrt{ } 2$	2

$13+2 \sqrt{ } 2$

$$
\begin{aligned}
& 5 \times 3=15,3 \times \sqrt{ } 2=3 \sqrt{ } 2,5 \times \sqrt{ } 2=5 \sqrt{ } 2,-\sqrt{ } 2 \times \sqrt{ } 2=-2 \\
& 13+8 \sqrt{ } 2
\end{aligned}
$$

(c)
$\frac{27}{5}$ or $5 \frac{2}{5}$ or 5.4

Additional Guidance

$$
\frac{1}{5} \times 33=\frac{1}{5} \times 9=1.8
$$

$$
\frac{1}{5} \times 9=1.8
$$

$\sqrt{ } 25= \pm 5$ and $\sqrt[4]{81}= \pm 3$ (allow a mixture or + and - for 3
and 5 but negative elsewhere not allowed)

$$
\begin{aligned}
& \text { B2 for } 27 \text { and } \frac{1}{5} \\
& \text { B2 for }{ }^{\frac{1}{5}} \times 33 \\
& \text { B1 for } 27 \text { or } \frac{1}{5} \\
& \text { B1 for } 5 \text { and } 3 \text { seen }
\end{aligned}
$$

Q7.
$101.4^{\frac{1}{2}}$ estimated as 10
condone - 10
$(6.430=) 1$
$7.99^{\frac{2}{3}}$ estimated as 4

14

> condone -6 if -10 used
> ft fully correct evaluation with B2 scored

Q8.
(a) 5
(b) 1
(c) $\sqrt[3]{27}$ or 3

$$
\frac{1}{7^{2}} \text { or }\left(\frac{1}{7}\right)^{2} \text { or } \frac{1}{49}
$$

$$
\frac{3}{49}
$$

Q9.
2
0.08

Q10.
$\frac{1}{3}$

Q11.
$3 x-(x-5)$
Condone omission of brackets
$2 x+5=17$

6
SC2 11

Alternative 1
$23 x=217 \times 2 \bar{x}$
$3 x=12+x$

6
SC2 11

Alternative 2

Substitutes a value for x and evaluates correctly as a power of 2 .

Substitutes a different value for and evaluates correctly as a power of 2 which is closer to 17.

6
SC2 11

Q12.
$x^{-\frac{2}{3}}$ or $a=-\frac{2}{3}$

B2 $\left(x^{\frac{1}{3}}\right)^{2}$ or $\left(x^{2}\right)^{\frac{-1}{3}}$ or $\left(x^{\frac{2}{3}}\right)^{-1}$ or $\left(x^{-2}\right)^{\frac{1}{3}}$ or $\left(x^{\frac{1}{3}}\right)^{-2}$ or $\frac{1}{x^{\frac{2}{3}}}$ or $-\frac{2}{3}$ B1 $(\sqrt[3]{x} 3)^{-2}$ or $\left(\sqrt[3]{x^{2}}\right)^{-1}$ or $\left(\frac{1}{x^{2}}\right)^{\frac{1}{3}}$ or $\frac{1}{\left(x^{2}\right)^{\frac{1}{3}}}$ or $\left(\frac{1}{\sqrt[3]{x}}\right)^{2}$ or base x with any negative index.

