Mark schemes

Q1.

Correct evaluation of a relevant power of 2 or 16

$$eg \ 16 = \frac{1}{2}(\pm) \ 4 \ or \ 16 = 25\% \ or \ 24 = 16 \ or$$

or 4 c = d

$$16^{\frac{1}{4}} = (\pm)2 \text{ or } 161 = 16 \text{ or } 160 = 1$$

M1

One correct pair of answers

A correct answer is such that d = 4c	
	A1

A second correct pair of answers

$$eg \ c = 0, \ d = 0$$

$$c = 1, \ d = 4 \ or \ c = -1, \ d = -4$$

$$c = 2, \ d = 8 \ or \quad c = \frac{1}{8}, \ d = \frac{1}{2} \ etc \dots$$

A1	
A1	

[3]

Q2.
(a)
$$\frac{1}{81^{\frac{1}{4}}}$$
 or $\frac{1}{\sqrt{81}}$ or $\sqrt[4]{\frac{1}{81}}$
or 3^{-1} or $9^{\frac{1}{2}}$
or $81^{\frac{1}{4}} = 3$ or $\sqrt[4]{81} = 3$
or $34 = 81$
 $\frac{1}{3}$
Additional Guidance
 3 without $81^{\frac{1}{4}}$ or $\sqrt[4]{81}$
(b) Alternative method 1
(16 =) 24
or (23)2x or 26
oe with consistent base 2

M1dep

$(16 =) 24 \text{ and } (2^{32x} \text{ or } 2^{6x})$	M1dep
2^{4+6x} or $2^{2(2+3x)}$	A1
Alternative method 2	
$((4 \times 8x)2 =) (22 \times 23x)$	M1
(2 ²⁺³)2	M1dep
2 ^{4+6x} or 2 ^{2(2 + 3x)} oe index	

[5]

B2

Q4.

Q3.

16

(a) $\frac{1}{27}$

Β3

M1

(b)
$$2^{3m} (= 2^{m^2}) \text{ or } (2^3)^m (= 2^{m^2})$$

oe

$$m2 = 3m \text{ or } m2 - 3m = 0 \text{ orm}(m - 3) = 0$$

or (m =) 0 or (m =) 3
oe

B1for $64^{\frac{1}{3}} = 4$

B1 for $\sqrt[3]{64 \times 64}$

B1for $\left(64^{\frac{1}{3}}\right)^2$ oe

 $B1 \text{for} \left(64^2\right)^{\frac{1}{3}} \text{oe}$

Q5. ¹/₃ or 0.33...

 $B1 \ 3^{-1} \ or \ \frac{\sqrt{1}}{3} \ or \ \left(\frac{1}{9}\right)^{\frac{1}{2}} \ or \ \sqrt{\frac{1}{9}} \\ or \ \frac{1}{9^{\frac{1}{2}}} \ or \ \frac{1}{\sqrt{9}}$

Additional Guidance

For B1 responses $\frac{1}{2}$ can be 0.5 For final two B1 responses 1 can be $\sqrt{1}$

Q6.

(a) *m*³

Do not accept $m \times m \times m$

(b) $3 \times 5 + 5 \times \sqrt{2} - 3 \times \sqrt{2} - \sqrt{2} \times \sqrt{2}$ or $3 \times 5 + 2 \sqrt{2} - \sqrt{2} \sqrt{2}$ or $13 + 5\sqrt{2} - 3\sqrt{2}$

> oe 4 terms or correct combination of 3 terms needed. If 4 terms given, 3 must be correct for M1 Allow in 'box method' or FOIL but watch out for correct signs (still allow one error).

M1

M1

13 + 2√2 A1

Additional Guidance

If answer correct allow 2 marks.

19 + 2√2 _{A0}

[6]

B2

B1

[2]

×	3	√2
5	15	5√2
√2	3√2	2

17 + 8√2

M0 (Only two terms correct)

×	3	√2
5	15	5√2
-√2	3√2	2

13 + 2√2

M1 A1 (Terms incorrect in table but 'recovered')

$$5 \times 3 = 15, 3 \times \sqrt{2} = 3\sqrt{2}, 5 \times \sqrt{2} = 5\sqrt{2}, -\sqrt{2} \times \sqrt{2} = -2$$

13 + 8√2

(c)
$$\frac{27}{5}$$
 or $5\frac{2}{5}$ or 5.4
B2 for 27 and
B2 for $\frac{1}{5} \times 33$

B2 for $\frac{5}{\times} \times 33$ B1 for 27 or $\frac{1}{5}$ B1 for 5 and 3 seen

 $\frac{1}{5}$

Additional Guidance

$$\frac{1}{5} \times 33 = \frac{1}{5} \times 9 = 1.8$$
B2
$$\frac{1}{5} \times 9 = 1.8$$
B1

 $\sqrt{25} = \pm 5$ and $\sqrt[9]{81} = \pm 3$ (allow a mixture or + and – for 3 and 5 but negative elsewhere not allowed)

B1

A0

Q7. $101.4^{\frac{1}{2}}$ estimated as 10 <i>condone – 10</i>			
	B1		
(6.430 =) 1	B1		
$7.99^{\frac{2}{3}}$ estimated as 4	B1		
14 condone −6 if −10 used ft fully correct evaluation with B2 scored	B1ft	[4]	
Q8.			
(a) 5	B1		
(b) 1	B1		
(c) ³ √27 or 3	M1		
$\frac{1}{7^2}$ or $\left(\frac{1}{7}\right)^2$ or $\frac{1}{49}$			
3	M1		
3 49	A1	[5]	
Q9.			
Z	B1		
$\frac{1}{5^2} \text{ or } \frac{1}{25} \text{ or } 0.04$ $\frac{2}{25} \text{ scores B1M1}$ M1			
25 scores B1M1	M1		
0.08	A1	[3]	

Q1	0. $\frac{1}{3}$		B1	[1]
Q1	1. 3 <i>x</i> - (<i>x</i> - 5)	Condone omission of brackets		
	2 <i>x</i> + 5 = 17		M1 M1	
	6 Alternative 1	SC2 11	A1	
	23 <i>x</i> = 217 × 2 ⁵ ⁄ _x		M1	
	3 <i>x</i> = 12 + <i>x</i> 6	SC2 11	M1	
	Alternative 2		A1	
		lue for <i>x</i> and evaluates correctly as a power of 2. Ferent value for x and evaluates correctly as a power of 2 which is	M1	
	6	SC2 11	M1	
Q1	2		A1	[3]
Ŷ	$x^{-\frac{2}{3}}$ or $a = -\frac{2}{3}$			

$$B2(x^{\frac{1}{3}})^{2} \text{ or } (x^{2})^{\frac{-1}{3}} \text{ or } (x^{\frac{2}{3}})^{-1} \text{ or}$$

$$(x^{-2})^{\frac{1}{3}} \text{ or } (x^{\frac{1}{3}})^{-2} \text{ or } \frac{1}{x^{\frac{2}{3}}} \text{ or } -\frac{2}{3}$$

$$B1(\sqrt[3]{x}3)^{-2} \text{ or } (\sqrt[3]{x^{2}})^{-1} \text{ or } (\frac{1}{x^{2}})^{\frac{1}{3}}$$

$$\text{ or } \frac{1}{(x^{2})^{\frac{1}{3}}} \text{ or } (\frac{1}{\sqrt[3]{x}})^{2} \text{ or base x with any negative index.}$$

B3	
	[3]