M1.
Full evaluation referencing that the steps are right but the order is wrong, giving the correct order
oe
B1 for a partial explanation eg references incorrect order without being specific

M2.

$$
\frac{1}{125^{\frac{2}{3}}} \text { or } 5^{-2} \text { or }(\sqrt[3]{125})^{-2}
$$

or $\sqrt[3]{125}=5$
$\frac{1}{(\sqrt[3]{125})^{2}}$ or $\frac{1}{(\sqrt[3]{125})^{2}}$ or $\left(\frac{1}{(\sqrt[3]{125})^{2}}\right)^{2}$
or $\sqrt[3]{\left(\frac{1}{125}\right)^{2}}$ or $125^{\frac{2}{3}}=25$
or $\frac{1}{5^{2}}$ or $\left(\frac{1}{5}\right)^{2}$ or 25^{-1} or 0.2^{2}
$\frac{1}{25}$
oe 0.04

M3.101.4 $4^{\frac{1}{2}}$ estimated as 10
$(6.430=) 1$
$7.99^{\frac{2}{3}}$ estimated as 4

14
condone -6 if -10 used
ft fully correct evaluation with B2 scored
B1ft

M4.
(a) x^{7}
$\mathrm{B} 1 \sqrt{x^{14}}$ or $\left(x^{14}\right)^{\frac{1}{2}}$ or $\sqrt{x^{5+9}}$
or $\left(x^{5+9}\right)^{\frac{1}{2}}$ or $x^{\frac{14}{2}}$ or $x^{\frac{5-9}{2}}$
or $x^{\frac{5}{2}} \times x^{\frac{8}{2}}$ or $x^{2.5} \times x^{4.5}$
(b) 0.2 or $\frac{1}{5}$ or 5^{-1}

$$
\text { B1 } 125^{-\frac{1}{3}} \text { or } \sqrt[-3]{125}
$$

$$
\text { or }\left(\frac{1}{125}\right)^{\frac{1}{3}} \text { or } \sqrt[3]{\frac{1}{125}}
$$

$$
\text { or } \frac{1}{125^{\frac{1}{3}}} \text { or } \frac{1}{\sqrt[3]{125}}
$$

$$
\text { or }\left(\frac{1}{5^{3}}\right)^{\frac{1}{3}} \text { or } \sqrt[3]{\frac{1}{5^{3}}}
$$

or $\frac{1^{\frac{1}{3}}}{5}$ or $\frac{\sqrt[3]{1}}{5}$

$$
\begin{aligned}
& \text { or } \frac{1}{y^{3}}=125 \text { or } y^{3}=\frac{1}{125} \text { or } \frac{1}{y}=5 \\
& \text { or } \frac{1}{y}=\sqrt[3]{125} \text { or } \frac{1}{y}=125^{\frac{1}{3}}
\end{aligned}
$$

M5. $8^{\frac{1}{3}}$ or $\frac{1}{\sqrt[3]{8^{2}}}$ or $\frac{1}{(\sqrt[3]{8})^{2}}$ or $\sqrt[3]{8}=2$

$$
\text { or } \frac{1}{2^{2}} \text { or } 2-2 \text { or } 4-1 \text { or } 22=4
$$

$\frac{1}{4}$ or 0.25

M6. $m=5$
$(32) p=3 m$ or $32 p=3 m$
or $(32) p=3$ their 5 or $32 p=+4{ }^{-5}$
or $35=243$ or 3 their $5(\sqrt{9})^{\text {their } 5}$
or 3their 5 correctly evaluated
$9 p=9^{\frac{m}{2}}$ or $9 p=3$ their 5
or $9 p=243$ or $32 p=243$
oe

$$
\begin{gathered}
2 p=\operatorname{mor} 2 p= \\
\text { their } 5 \text { or } 9 p F^{\frac{\text { their } 5}{2}} \\
\text { oe }
\end{gathered}
$$

$$
p=2.5
$$

oe
ft for values of mand p where $p=\frac{m}{2}$

M7.

$$
\begin{aligned}
& x^{-\frac{2}{3}} \text { or } a=-\frac{2}{3} \\
& \qquad \begin{array}{l}
\text { B2 }\left(x^{\frac{-1}{3}}\right)^{2} \text { or }\left(x^{2}\right)^{\frac{-1}{3}} \text { or }\left(x^{\frac{2}{3}}\right)^{-1} \text { or } \\
\left(x^{-2}\right)^{\frac{1}{3}} \text { or }\left(x^{\frac{1}{3}}\right)^{-2} \text { or } \frac{1}{x^{\frac{2}{3}}} \text { or }-\frac{2}{3} \\
B 1 \text { (} \sqrt[3]{x})^{2} \text { or }\left(\sqrt[3]{x^{2}}\right)^{-1} \text { or }\left(\frac{1}{x^{2}}\right)^{\frac{1}{3}} \\
\text { or } \frac{1}{\left(x^{2}\right)^{\frac{1}{3}}} \text { or }\left(\frac{1}{\sqrt[3]{x}}\right)^{2} \\
\text { or base } x \text { with any negative index. }
\end{array}
\end{aligned}
$$

M8.Correct evaluation of a relevant power of 2 or 16

$$
\text { eg } 16^{\frac{1}{2}}(\pm) 4 \text { or } 162=256 \text { or } 24=16 \text { or }
$$

or $4 c=d$

$$
16^{\frac{1}{4}}=(\pm) 2 \text { or } 161=16 \text { or } 160=1
$$

One correct pair of answers
A correct answer is such that $d=4 c$

A second correct pair of answers

$$
\begin{aligned}
& \text { eg } c=0, d=0 \\
& c=1, d=4 \text { or } c=-1, d=-4 \\
& c=2, d=8 \text { or } \quad c=\frac{1}{8}, d=\frac{1}{2} \text { etc ... }
\end{aligned}
$$

M9. $\quad(3 \sqrt{ } 64) 2$ or $(3 \sqrt{ } 642)$ or $42 \sqrt[3]{6096}$

16

M10. (a) $\frac{1}{27}$
B2 for 27 or $\frac{1}{3}$ or $\frac{1}{729}$ or $27-1$
B1 for 3 or 729 or $9^{\frac{1}{\frac{3}{2}}}$ or -27
(b) $\quad 2^{3 m}\left(=2^{m^{2}}\right)$ or $\left(2^{3}\right)^{m}\left(=2^{m^{2}}\right)$
oe

$$
\begin{aligned}
& m 2=3 m \text { or } m 2-3 m=0 \operatorname{om}(m 3)=0 \\
& \text { or }(m=) 0 \text { or }(m=) 3
\end{aligned}
$$

oe

0 and 3

A1
[6]

M11. $\sqrt[3]{27}(=3)$ or 272 or 729
Do not allow $\sqrt[3]{27}=9$
M1
9
A1

M12. (a) Sight of $\sqrt{4}=2$ followed by 23 or 43 followed by $\sqrt{64}$
B1 for partial solution but incomplete
eg for $\sqrt{4}=2$ seen or 64 seen
(b) $\quad(4 y=)(41.5) 6$ or $(22) y=(23) 6$

Allow 1.5×6 or $2 \times y=3 \times 6$
M1
9
Allow $\frac{18}{2}$ and 49

M13.B1 for $64^{\frac{1}{3}}=4$
B1 for $4^{\frac{3}{2}}=8$
B1 for $27^{\frac{2}{3}}=9$

M14.

$$
\begin{aligned}
& \frac{4}{3} \pi x^{3}(=) \frac{2}{3} \pi y^{3} \\
& \\
& \begin{array}{l}
\text { oe e.g. } 1 \quad \frac{4}{3} \pi \times x^{3}(=) \frac{1}{2} \times \frac{4}{3} \pi \times y^{3} \\
\text { e.g. } 2 \text { y3 }=2 x
\end{array}
\end{aligned}
$$

$$
\left(\frac{y^{3}}{x^{3}}=\right) \frac{\frac{4}{3} \pi}{\frac{2}{3} \pi} \text { or } y=\sqrt[3]{2} x
$$

$$
\text { oe e.g. } \frac{y^{3}}{x^{3}}=2
$$

$$
\sqrt[3]{2} \text { scores M2 AO }
$$

M15. $9^{\frac{1}{2}}=3$ or $(-7)^{\circ}=1$

$$
\begin{aligned}
&\left(\frac{1}{8}\right)^{-\frac{1}{3}}=8^{\frac{1}{3}} \frac{1}{\sqrt[3]{\frac{1}{8}}} \text { or } \frac{1}{\frac{1}{2}} \text { or } \sqrt[3]{8} \text { oe } \\
&-\frac{1}{2} \text { implies M1 } \\
& \text { or }\left(\frac{1}{2}\right)^{-1} \text { or }\left(\frac{1}{8}\right)^{\frac{1}{3}}=\frac{1}{2} \text { or } \sqrt[3]{8}=\frac{1}{2}
\end{aligned}
$$

$$
\left(\frac{1}{8}\right)^{-\frac{1}{3}}=2
$$

All three numbers correctly evaluated and in correct order
$(-7)^{\circ}$
$\left(\frac{1}{8}\right)^{-\frac{1}{3}}$
$9^{\frac{1}{2}}$

