M1.

Full evaluation referencing that the steps are right but the order is wrong, giving the correct order

B1 for a partial explanation eg references incorrect order without being specific

B2

[2]

M2.
$$\frac{1}{125^{\frac{2}{3}}} \text{ or } 5^{-2} \text{ or } (\sqrt[3]{125})^{-2}$$

or
$$\sqrt[3]{125} = 5$$

М1

$$\frac{1}{(\sqrt[3]{125})^2}$$
 or $\frac{1}{(\sqrt[3]{125})^2}$ or $\left(\frac{1}{(\sqrt[3]{125})^2}\right)^2$

or
$$\sqrt[3]{\left(\frac{1}{125}\right)^2}$$
 or $125^{\frac{2}{3}} = 25$

or
$$\frac{1}{5^2}$$
 or $\left(\frac{1}{5}\right)^2$ or 25^{-1} or 0.2^2

M1dep

 $\frac{1}{25}$

oe 0.04

Αl

[3]

 $M3.101.4^{\frac{1}{2}}$ estimated as 10

condone - 10

В1

$$(6.430 =) 1$$

В1

 $7.99^{\frac{2}{3}}$ estimated as 4

В1

14

condone −6 if −10 used ft fully correct evaluation with B2 scored

B1ft

[4]

M4.

(a) X^7

B1
$$\sqrt{x^{14}}$$
 or $(x^{14})^{\frac{1}{2}}$ or $\sqrt{x^{5+9}}$ or $(x^{5+9})^{\frac{1}{2}}$ or $x^{\frac{14}{2}}$ or $x^{\frac{5+9}{2}}$ or $x^{\frac{5}{2}} \times x^{\frac{9}{2}}$ or $x^{2.5} \times x^{4.5}$

B2

(b)
$$0.2 \text{ or } \frac{1}{5} \text{ or } 5^{-1}$$

$$B1 \quad 125^{-\frac{1}{3}} \quad \text{or } -\sqrt[3]{125}$$
or $\left(\frac{1}{125}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{125}}$
or $\frac{1}{125^{\frac{1}{3}}}$ or $\sqrt[3]{\frac{1}{5^3}}$
or $\left(\frac{1}{5^3}\right)^{\frac{1}{3}}$ or $\sqrt[3]{\frac{1}{5^3}}$
or $\frac{1^{\frac{1}{3}}}{5}$ or $\sqrt[3]{\frac{1}{5^3}}$

or
$$\frac{1}{y^3} = 125$$
 or $y^3 = \frac{1}{125}$ or $\frac{1}{y} = 5$
or $\frac{1}{v} = \sqrt[3]{125}$ or $\frac{1}{v} = 125^{\frac{1}{3}}$

B2 **[4]**

$$\frac{1}{8^{\frac{2}{3}}}$$
 or $\frac{1}{\sqrt[3]{8^2}}$ or $\frac{1}{(\sqrt[3]{8})^2}$ or $\sqrt[3]{8} = 2$

or
$$\frac{1}{2^2}$$
 or 2-2 or 4-1 or 22 = 4

MΊ

A1 **[2]**

M6*𝒴*= 5

В1

$$(32)p = 3m \text{ or } 32p = 3m$$

or
$$(32)p = 3$$
their 5 or $32p = ^{\text{th}} 3^{\text{r}} 5$

or 35 = 243 or 3their
$$5^{-(\sqrt{9})^{\text{their 5}}}$$

or 3their 5 correctly evaluated

$$9p = 9^{\frac{m}{2}}$$
 or $9p = 3$ their 5

or
$$9p = 243$$
 or $32p = 243$

oe

MΊ

$$2p = mor 2p = their 5 or 9p = \frac{their 5}{2}$$

М1

p = 2.5

oe

ft for values of Mand p where p=2

A1ft

[4]

M7.

$$x^{-\frac{2}{3}}$$
 or $a = -\frac{2}{3}$

B2
$$(x^{\frac{-1}{3}})^2$$
 or $(x^2)^{\frac{-1}{3}}$ or $(x^{\frac{2}{3}})^{-1}$ or $(x^{-2})^{\frac{1}{3}}$ or $(x^{\frac{1}{3}})^{-2}$ or $\frac{1}{x^{\frac{2}{3}}}$ or $-\frac{2}{3}$

B1 or
$$(\sqrt[3]{x})^2$$
 or $(\sqrt[3]{x^2})^{-1}$ or $(\frac{1}{x^2})^{\frac{1}{3}}$ or $(\frac{1}{\sqrt[3]{x}})^2$ or base x with any negative index.

В3 [3]

M8. Correct evaluation of a relevant power of 2 or 16

$$eg\ 16 \stackrel{1}{=} (\pm)\ 4 \ or\ 162 = 256 \ or\ 24 = 16 \ or$$

or 4c = d

16
$$\frac{1}{4}$$
 = (±)2 or 161 = 16 or 160 = 1

М1

One correct pair of answers

A correct answer is such that d = 4c

A1

A second correct pair of answers

$$eg \ c = 0, \ d = 0$$
 $c = 1, \ d = 4 \ or \ c = -1, \ d = -4$
 $c = 2, \ d = 8 \ or \quad c = \frac{1}{8}, \ d = \frac{1}{2} \ etc \dots$

A1 **[3]**

M9. $(3\sqrt{64})2$ or $(3\sqrt{642})$ or $42\sqrt[3]{64096}$

M1

16

Αl

[2]

M10. (a)
$$\frac{1}{27}$$

B2 for 27 or
$$\frac{1}{3}$$
 or $\frac{1}{729}$ or 27-1
 $\frac{1}{\frac{3}{2}}$
B1 for 3 or 729 or $\frac{1}{9^{\frac{3}{2}}}$ or -27

ВЗ

(b)
$$2^{3m} \left(= 2^{m^2}\right) \text{ or } \left(2^3\right)^m \left(= 2^{m^2}\right)$$

М1

$$m2 = 3m \text{ or } m2 - 3m = 0 \text{ orn}(m3) = 0$$

or $(m =) 0 \text{ or } (m =) 3$

oe

0 **and** 3

A1 [6]

M11. $\sqrt[3]{27} (= 3)$ or 272 or 729

Do not allow $\sqrt[3]{27} = 9$ M1

9

[2]

M12. (a) Sight of $\sqrt{4} = 2$ followed by 23 or 43 followed by $\sqrt{64}$ B1 for partial solution but incomplete

eg for $\sqrt{4} = 2$ seen or 64 seen

(b) (4y =) (41.5)6 or (22)y = (23)6Allow $1.5 \times 6 \text{ or } 2 \times y = 3 \times 6$

Allow $\frac{18}{2}$ and 49

[4]

M13.B1 for
$$64^{\frac{1}{3}} = 4$$

B1 for
$$4^{\frac{3}{2}} = 8$$

B1 for
$$27^{\frac{2}{3}} = 9$$

В3 [3]

M14.
$$\frac{4}{3}\pi x^3 (=) \frac{2}{3}\pi y^3$$

oe e.g. 1
$$\frac{4}{3}\pi \times x^3 (=) \frac{1}{2} \times \frac{4}{3}\pi \times y^3$$

e.g. 2 $y3 = 2x$

М1

$$(\frac{y^3}{x^3} =) \frac{\frac{4}{3}\pi}{\frac{2}{3}\pi}$$
 or $y = \sqrt[3]{2}x$

oe e.g.
$$\frac{y^3}{x^3} = 2$$

M1dep

 $2^{\frac{1}{3}}$

$$\sqrt[3]{2}$$
 scores M2 A0

Αl

[3]

M15.
$$9^{\frac{1}{2}} = 3$$
 or $(-7)^{\circ} = 1$

B1

AQA GCSE Maths - Fractional Indices

$$\left(\frac{1}{8}\right)^{-\frac{1}{3}} = 8^{\frac{1}{3}}$$
 or $\sqrt[3]{\frac{1}{8}}$ or $\frac{1}{2}$ or $\sqrt[3]{8}$ oe $-\frac{1}{2}$ implies M1

or
$$\left(\frac{1}{2}\right)^{-1}$$
 or $\left(\frac{1}{8}\right)^{\frac{1}{3}} = \frac{1}{2}$ or $\sqrt[3]{8} = \frac{1}{2}$

МΊ

$$\left(\frac{1}{8}\right)^{-\frac{1}{3}} = 2$$

Αl

All three numbers correctly evaluated and in correct order

$$\left(\frac{1}{8}\right)^{\frac{1}{3}}$$

$$9^{\frac{1}{2}}$$

Αl

[4]