Q1.
(a) 63
(b) $5(y+1)$ or $5 y+5$
or $(4+1)(y+1)$ or $4 y+4+\quad y+1$

Additional Guidance
Condone (4+1) $\times(\nVdash 1)$

Condone $5 \times(y+1)$ or $5 \times \quad y+5$

Condone missing final bracket $5 *$ (ly

Do not ignore further incorrect work
(c) $(x+1)(y+1)$
or $x(y+1)+y+1$ or
$y(x+1)+x+1$ or $x y$
$+x+y+1$

Additional Guidance
Condone $(x+1) \times(y+1)$

Condone $x \times(y+1)+y+1$

Do not ignore further incorrect work
(d) $(2 x+1)(y+1)$
or $2 x(y+1)+y+1$
or $y(2 x+1)+2 x+1$
or $2 x y+2 x+y+1$

Additional Guidance
Condone $(2 x+1) \times(y 1)$

Condone $2 x \times(y+1)+\quad y+1$

Do not ignore further incorrect work

Q2.
(a) 511
7×73
or 7 is a factor or 73 is a factor
(b) Incorrect and 25-1:27-1 $=5: 7$ or 31 : 127 shown

Q3.
60

Q4.
105
B2 $a \times b \times c$ with two correct from 3, 7 and 5 B1 $a \times b \times c$ with one correct from 3, 7 and 5 or
any two of 3, 7 and 5 possibilities identified for two of the digits

Q5.

3 choices for 1st digit
$3 \times 4 \times 3 \times 2(\times 1)$

72

Q6.
Alternative method 1
1800
B2 $a \times b \times c \times d$ with at least 3 correct from 9, 10, 10 and 2 $B 1 a \times b \times c \times d$ with at least 2 correct from 9, 10, 10 and 2

or

identifies 9 possibilities for first digit or identifies 2 possibilities for final digit

Alternative method 2
9000
The number of digits between 1000 and 9999 inclusive
their $9000 \div 5$

1800

