Mark schemes

Q1.
(a) Division set up, with 8 and a remainder 3 seen in correct position
or
$830 \leq$ answer < 840 but not 834

$$
\begin{gathered}
8 \\
\sqrt{91^{3} 74}
\end{gathered} \text { or } \begin{array}{cccc}
8 \\
\underline{8} & \frac{8}{3} & & \\
\hline
\end{array}
$$

834

Additional Guidance
Build up method or chunking method must lead to $830 \leq$ answer <840 to score M1 or better
(b) $\frac{35}{42}(+) \frac{18}{42}$
oe
fractions with a correct common denominator and at least one correct numerator
$\frac{53}{42}$
oe improper fraction
$1 \frac{11}{42}$
oe mixed number
ft for correct conversion of an improper fraction to a mixed number

Additional Guidance
For B1ft the mixed number must not be an integer
Beware $5+3=53$

When attempts are made to cancel the fraction, full marks cannot be scored
$\frac{53}{42}=\frac{9}{4}=2 \frac{1}{4}$ (attempt to cancel occurs before conversion to mixed number)
$\frac{53}{42}=1 \frac{11}{42}=1 \frac{1}{3}$ (attempt to cancel occurs after completely correct answer seen)

Q2.
$\frac{5 \times 3}{6 \times 20}$
oe fraction
$\frac{1}{8}$
ft their fraction answer correctly cancelled down into its simplest form

Q3.
A correct pair of fractions meeting all conditions
eg $\frac{1}{9}$ and $\frac{2}{9}$ or $\frac{1}{12}$ and $\frac{1}{4}$

B2
a pair of fractions which add to $\frac{1}{3}$ but which do not satisfy all conditions
eg, $\frac{1}{6}$ and $\frac{1}{6}$ or $\frac{2}{3}$ and $-\frac{1}{3}$
or $\frac{1}{3}$ - any fraction less than $\frac{1}{3}$ correctly
changed to common denominator with at least one numerator correct
B1
$\frac{1}{3}$ changed to any equivalent fraction
$\frac{2}{6}, \frac{3}{9}, \frac{4}{12}, \ldots$
or
$\frac{1}{3}$ - any fraction less than $\frac{1}{3}$

Q4.

$$
\begin{aligned}
& \frac{17}{8}\left(-\frac{2}{3}\right) \\
& \quad \text { or } 1 \frac{9}{8}\left(-\frac{2}{3}\right)
\end{aligned}
$$

Common denominator with at least one numerator correct
ft their fractions
$\frac{51}{24}(-) \frac{16}{24}$ if correct
Or grid method with correct bottom right cell and at least one other cell correct
$\frac{35}{24}$ or $1 \frac{11}{24}$ oe

Alternative method 1
Common denominator with at least one numerator correct
eg $2 \frac{3}{24}-\frac{16}{24}$ if fully correct
Or grid method with correct bottom right cell and at least one other cell correct
$1 \frac{27}{24}-\frac{16}{24}$
ft their $2 \frac{3}{24}$
$\frac{35}{24}$ or $1 \frac{11}{24}$

Alternative method 2
Common denominator with at least one numerator correct
eg $2 \frac{3}{24}-\frac{16}{24}$ if fully correct
Or grid method with correct bottom right cell and at least one other cell correct
$2-\frac{13}{-24}$
Award for subtraction of numerators (one may be wrong)
$\frac{35}{24}$ or $1 \frac{11}{24}$

Alternative method 3
$1 \frac{1}{3}+\frac{1}{8}$

Common denominator with at least one numerator correct
eg $\frac{32}{24}+\frac{3}{24}$ if fully correct
$\frac{35}{24}$ or $1 \frac{11}{24}$

Q5.
Correct method to change $\frac{5}{8}$ and $\frac{2}{3}$ into fractions with common denominator with at least one correct numerator
eg $\frac{16}{24}, \frac{15}{24}$ (either way around)

Correct fractions and No

Alternative method 1
Correct method to calculate $\frac{5}{8}$ of a chosen value and $\frac{2}{3}$ of the same value

$$
\text { eg } 5 \times 40 \div 8 \text { and } 2 \times 40 \div 3
$$

or
$\frac{5}{8} \times 40$ and $\frac{2}{3} \times 40$

Correct evaluations and No

Alternative method 2
Correct method to change $\frac{5}{8}$ and $\frac{2}{3}$ into decimals or percentages

$$
\begin{aligned}
& \frac{5}{8}=0.625 \text { or } 62.5(\%) \\
& \quad \text { Correct and consistent decimals or percentages }
\end{aligned}
$$

and

```
2
\(\overline{3}=0.66(6 \ldots)\) or 0.67 or 66(6...)(\%)
or 67(\%)
and
No
```

Q6.
(a) $\frac{1}{12}$ oe

$$
\text { eg } \frac{12}{144}
$$

(b) $\quad \frac{1}{4}$ and $)^{\frac{2}{4}}$
or $\frac{2}{8}$ and $\frac{4}{8}$ oe into equivalent form or 25(\%) and 50(\%) fractions with common denominator
or 0.25 and 0.5 or percentages or decimals
$\frac{1.5}{4}$ oe

$$
\text { eg } \frac{37.5}{100} \text { or } 37.5 \% \text { or } 0.375
$$

$\frac{3}{8}$ oe fraction Strand (ii)

Alternative method

$$
\begin{aligned}
& \frac{1}{4}+\frac{1}{2}\left(=\frac{3}{4}\right) \\
& \frac{3}{4} \times \frac{1}{2} \text { oe }
\end{aligned}
$$

> oe fraction
> Strand (ii)

Q7.
(a) $\frac{19}{7}$

Must be a fraction
(b) $\frac{16}{24}$
(c) $\frac{9}{2}=4.5$

Q8.
$\frac{15}{35}$

Q9.

$$
\frac{11}{4} \text { or } \frac{16}{9}
$$

oe fraction
$\frac{\text { their } 11 \times \text { their } 16}{4 \times 9}$
or $\frac{176}{36}$
oe fraction
$\frac{11 \times 8}{2 \times 9}$ or $\frac{88}{18}$ or $\frac{11 \times 4}{9}$ or $\frac{44}{9}$
oe mixed number
SC2 $4 . \dot{8}$

Additional Guidance

$$
4 \frac{16}{18} \text { or } 4 \frac{32}{36}
$$

Working in decimals is SC2 or 0

Q10.
$\frac{11}{4}(x) \frac{12}{7}$

> Converts both fractions to improper with at least one correct

$$
\begin{aligned}
& \frac{\text { their } 11 \times \text { their } 12}{\text { their } 4 \times \text { their } 7} \text { or } \frac{132}{28} \\
& \text { or } 4 \frac{20}{28} \text { or } \frac{33}{7} \\
& \text { oe fraction }
\end{aligned}
$$

$4 \frac{5}{7}$

Q11.
(a) $\frac{5}{20}(+)^{\frac{14}{20}}$ oe fractions with a common denominator and at least one correct numerator
$\frac{19}{20}$

$$
\text { oe fraction eg } \frac{38}{40} \text { or } \frac{95}{100}
$$ SC1 0.95

(b) $\frac{3 \times 7}{5 \times 2}$ or $\frac{21}{10}$
oe fraction eg $\frac{210}{100}$

$$
2^{\frac{1}{10}} \text { oe mixed number eg } 2^{\frac{10}{100}}
$$

Q12.

$$
\begin{gathered}
162 \times \frac{5}{3} \text { or } 162 \div \frac{3}{5} \text { or } 162 \times 5 \text { or } 810 \text { or } 162 \div 3 \text { or } 54 \\
\text { oe } 162 \div 0.6
\end{gathered}
$$

Additional Guidance
For $162 \times \frac{5}{3}$ as a decimal, allow 162×1.66 or better truncation or rounding or 162×1.67 for M1
97.2

Q13.
Two equivalent fractions with the same denominator
eg $\frac{2}{8}$ and $\frac{1}{8}$ or $\frac{4}{16}$ and $\frac{2}{16}$
or $\frac{8}{32}$ and $\frac{4}{32}$
oe

$$
\text { or } \quad \frac{1}{4}+\frac{1}{8}\left(=\frac{3}{8}\right)
$$

Allow 2 lists of equivalent fractions with at least 3 correct in each list
eg $\frac{1}{4}=\frac{2}{8}=\frac{3}{12}=\frac{4}{16} \cdots$
and $\frac{1}{8}=\frac{2}{16}=\frac{3}{24}=\frac{4}{32} \ldots$

Correct equivalent fraction

$$
\begin{array}{r}
\frac{1 \frac{1}{2}}{8} \text { or } \frac{3}{16} \text { or } \frac{6}{32} \\
\text { oe } \\
\text { or } \frac{3}{8} \div 2
\end{array}
$$

Alternative method
0.25 and 0.125 or
25% and 12.5%
0.1875 or 18.75%
$\frac{3}{16}$

Q14.
$\frac{1}{3}$

