M1.
800 or 1600 or 200 or 60 or 120 or 100

800 or 1600 and 200 and 60 or 120 or 100

> 1920 or 1900 or 2000
> SC1 1900 without working or 1900 from 1899

M2.
32
B1 4 or 16 or 0.5

M3.(a) $26 \div 4$ or 6.5

$$
\text { or } 26 \times 20 \times \frac{1}{4} \quad \text { or } 130
$$

26 - their 6.5
or $26 \div 4 \times 3$

$$
\text { or }(520-130) \div 20 \text { or } 390 \div 20
$$

or (520 - their 130) $\div 20$
or their $390 \div 20$
oe
19.5
(b) Any trial with correct factors giving 168 except 1×168
or any correctly evaluated product
such that $10 \leq$ rows ≤ 13 and
$10 \leq$ seats ≤ 16
$2(x) 84$ or $168 \div 2=84$
$3(x) 56$ or $168 \div 3=56$
$4(x) 42$ or $168 \div 4=42$
$6(x) 28$ or $168 \div 6=28$
$7(x) 24$ or $168 \div 7=24$
$8(x) 21$ or $168 \div 8=21$
$12(x) 14$ or $168 \div 12=14$
oe

A different trial with correct factors giving 168 except 1×168
or a different correctly evaluated
product such that $10 \leq$ rows ≤ 13 and
$10 \leq$ seats ≤ 16

12 rows
SC2 for 12 seats and 14 rows
14 seats

$$
\text { SC2 for } 12 \text { and } 14 \text { as final working }
$$

M4.
(a) $2.17158 \ldots$
(b) 2.2
ft their answer to (a)

M5.(a) Subtracting two amounts with one correct
83-57.7
or
83 and 57.7 chosen
$57.7+25.3=83$
25.3

Condone 25300000
(b) $0.21 \times$ their 126200
oe
Condone any attempt to incorporate the million
Digits 26502 imply M1

26502
Condone 26502000000
SC1 99698

Additional Guidance

Allow the method for 21% of any value from table (or misread)
Possible answers are 17.43, 14.07, 12.117, 11 256, 11739
Must be using correct value for full marks

Mark the whole method so further working will not score (except for those who misread and work out 21% off - see SC1)
(c) $36600000000 \div 29300000$
or
36600 (million) $\div 29.3$ (million)
Digits 1249... or 125... imply M1
1249. ...

May be implied by 1250

1250
ft any answer correctly rounded to the nearest 10

M6.100 seen

20

M7.10 or 40 used as an approximation

M8.Sight of $20,0.5,10$ or 2

$$
\begin{aligned}
& \frac{20 \times 0.5}{2} \\
& \quad \text { oe } \frac{10}{2} \text { or } 10 \times 0.5 \text { or } 20 \times 0.25
\end{aligned}
$$

5

M9.Attempt to count squares
or any area calculation e.g. 4×7
Evidence of counting areas e.g. dots or numbers in shaded squares
[22, 27]
A1 for $[19,22)$ or $(27,30]$

M10.2.2 pounds $=1000$ grams seen or implied May be implied from working $1 \div 2.2$ (= 0.45 kg$)(=1$ pound)
(1 pound =) $1000 \div 2.2$
(= 454 ... grams)

$$
\text { (1 gram }=) 2.2 \div 1000 \text { (= } 0.0022 \text { pound) }
$$

or $1 \div 2.2 \times 1000$
$1 \div 2.2 \times 0.5(=0.227 \ldots$ grams $)$

```
( \(\frac{1}{2}\) pound =) \(1000 \div 2.2 \div 2\)
    100 grams \(=2.2 \div 1000 \times 100\)
    (= 0.22 pounds)
```

(= 227.2 ... grams)
or 200 grams $=2.2 \div 1000 \times 200$ (= 0.44 pounds)
[227, 227.5] or 225 or 230
or 250 grams $=2.2 \div 1000 \times 250$
(= 0.55 pounds)
or 500 grams $=2.2 \div 1000 \times 500$
(= 1.1 pounds)
[227, 227.5] or 225 or 230 and 250 g stated 0.55 (pounds) and 250 g stated 0.44 (pounds) and 250 g stated SC3 for e.g. 0.227 and 250 g stated

Alternative method

2 pounds $=1000$ grams seen or implied
May be implied from working

$$
1 \div 2(=0.5 \mathrm{~kg})(=1 \text { pound })
$$

```
(1 pound =) \(1000 \div 2\)
(= 500 grams)
    (1 gram =) \(2 \div 1000\) (= 0.002 pound)
or \(1 \div 2 \times 1000\)
(= 500 grams)
    \(1 \div 2 \times 0.5(=0.25 \mathrm{grams})\)
```

```
( \(\frac{1}{2}\) pound \(=\) ) \(1000 \div 2 \div 2\)
(= 250 grams)
100 grams \(=2 \div 1000 \times 100\) ( \(=0.2\) pounds)
or 200 grams \(=2 \div 1000 \times 200\) ( \(=0.4\) pounds)
or 250 grams \(=2 \div 1000 \times 250\) ( \(=0.5\) pounds)
or 500 grams \(=2 \div 1000 \times 500\) ( \(=1\) pound)
```

250 g stated
SC3 for e.g. 0.25 and 250 g stated

M11. $\frac{40 \times 200}{80}$
M1 for any two shown in the appropriate calculation M1 for $41 \approx 40$ and $198 \approx 200$ and $77 \approx 80$ clearly stated if not used in a calculation

Correct answer only is M1A1 but must use correct approximations if working is seen

M12.
(a) 1.4
oe
(b) 1.26

M13.
(a) 28000

Allow 28 thousand
(b) 28400
(c) $5.30+1 \mathrm{~h} 45 \mathrm{~min}(=7.15)$
oe
1 h $45 \mathrm{~min}+3 \mathrm{~h} 30 \mathrm{~min}(=5 \mathrm{~h} 15 \mathrm{~min})$
or
$105 \mathrm{~min}+210 \mathrm{~min}$ (= 315 min)
their $7.15+3 \mathrm{~h} 30 \mathrm{~min}$
$5.30+$ their 5 h 15 min
10.45
oe

Correct decision for their 10.45
Strand (iii) Must score at least M1
SC1 10.05

Alternative 1

$10.00-3$ h 30 min (= 6.30)
oe
1 h $45 \mathrm{~min}+3$ h $30 \mathrm{~min}(=5 \mathrm{~h} 15 \mathrm{~min})$
or
$105 \min +210 \min (=315 \mathrm{~min})$

Their 6.30-1 h 45 min
10.00 - their 5 h 15 min
4.45
oe

Correct decision for their 4.45
Strand (iii) Must score at least M1

SC1 10.05

Q1ft

Alternative 2

$5.30+3 \mathrm{~h} 30 \mathrm{~min}$ (= 9.00)

their $9.00+1 \mathrm{~h} 45 \mathrm{~min}$
10.00 - their 9.00
10.45

1 hour (and 1 h 45 min)

Correct decision for their 10.45 or
their 1 hour (and 1 h 45 min)
Strand (iii) Must score at least M1
SC1 10.05

> Q1ft

Alternative 3

$10.00-5.30$ (= 4 h 30 min$)$
$1 \mathrm{~h} 45 \mathrm{~min}+3 \mathrm{~h} 30 \mathrm{~min}$

5h 15 min and 4 h 30 min

Correct decision for their 5 h 15 min and their 4 h 30 min
Strand (iii) Must score at least M1
SC1 10.05

Use of incorrect decimal times (1.45 and 3.3). Eg,
$5.3+1.45+3.3$ scores MOMOAOQ0
$5.3+1.45+3.3=10.05$ scores SC1
$5.3+1.45 \rightarrow 6.75+3.5=10.25$ scores M0M1A0Q0
Use of correct decimal times (1.75 and 3.5). Eg,
$5.5+1.75+3.5=10.75$ and No scores M1M1A0Q1
$5.5+1.75+3.5=10.75 \rightarrow 10.45$ scores M1M1A1Q0

M14.(a) 300 or 600 or 50 or 100 or 20

300 or 600
and
50 or 100
and
20

720
SC2 480 SC2 860 SC2 719 SC1 any
table value rounded to 1sf SC1 715
SC1 720 without M1 awarded
(b) $(349+349+59+59+39$ or 855$)-(299+299+49+49+19$ or 715 or their incorrect total of exact values for July in part(a))

140
ft 855 - their incorrect total of exact values in part(a)

Alternative Method $2 \times 50+2 \times$
$10+20$ or $350+350+60+60+40$

- their 720

$$
\text { ft } 860 \text { - their } 720 \text { from rounding in part(a) }
$$

M15. 30 or 5
Allow 30.0 or 5.0

M16. Any two numbers approximated ie $400,402,403,2,39$ or 40

All three numbers approximated or a calculation using two approximated values

$$
e^{\frac{402.5}{78}}
$$

5

$$
\text { must come from } \frac{400}{2 \times 40}
$$

