Questions are for both separate science and combined science students unless indicated in the question

1. There are different groups of waves in the electromagnetic spectrum.
(a) Figure 1 shows the position of three groups of the waves.

Figure 1

A	Microwaves	B	Visible light	C	D	Gamma rays

Which letter shows the position of infrared?
Tick (\vee) one box.
A

B \square
C \square
D \square

A student investigated how the colour of a surface affects the amount of infrared the surface absorbs.
Figure 2 shows the equipment used.

Figure 2

(b) Complete the sentence.

Choose the answer from the box.

| a control the dependent | the independent |
| :---: | :---: | :---: |

In this investigation the distance between each flask and the infrared heater is \qquad variable.
(c) The student wrote the hypothesis:
'Surface colour of the flask affects the amount of infrared absorbed when the heater is switched on for five minutes.'

Describe how the equipment in Figure 2 could be used to test this hypothesis.
\qquad

The table below shows the results.

Colour of flask	Temperature increase in ${ }^{\circ} \mathrm{C}$		
	Test 1	Test 2	Test 3
Black	19	17	27
Silver	10	12	11

(d) Which one of the results for the black flask is anomalous?
\qquad
(e) The anomalous result was caused by reading the thermometer incorrectly. What should the student do with the anomalous result?
\qquad
-
\qquad
(f) Calculate the mean temperature increase for the silver flask.
\qquad
\qquad

-
(g) What conclusion can be made from the table above?

Tick $\left({ }_{V}\right)$ one box.

Both flasks absorbed the same amount of infrared during the five minutes.

The black flask absorbed the most infrared during the five minutes.

The silver flask absorbed the most infrared during the five minutes.

2. The data given in the table below was obtained from an investigation into the refraction of light at an air to glass boundary.

Angle of incidence	Angle of refraction
20°	13°
30°	19°
40°	25°
50°	30°

Describe an investigation a student could complete in order to obtain similar data to that given in the table above.
Your answer should consider any cause of inaccuracy in the data.
A labelled diagram may be drawn as part of your answer.(separate only)
\qquad
3. A student investigated how the magnification produced by a convex lens varies with the distance (d)between the object and the lens.

The student used the apparatus shown in Figure 1.

Figure 1

(a) The student measured the magnification produced by the lens by measuring the image height in centimetres.
Explain why the image height in centimetres was the same as the magnification.
\qquad
\qquad
\qquad
\qquad
(b) The data recorded by the student is given in Table 1.

Table 1

Distance hetween the object and the tensin cm 2530405060	Magnification
	4.
	0
	2.
	0
	1.

It would be difficult to obtain accurate magnification values for distances greater than 60 cm.
0.

Suggest one change that could be made so that accurate magnification values could be obtained for distances greater than 60 cm .(separate only) 7
\qquad
0.

5
(1)
(c) The graph in Figure $\mathbf{2}$ is incomplete.

Figure 2

Complete the graph in Figure $\mathbf{2}$ by plotting the missing data and then drawing a line of best fit. (separate only)
(d) How many times bigger is the image when the object is 35 cm from the lens compared to when the object is 55 cm from the lens? (separate only)
\qquad
\qquad
\qquad
(e) During the investigation the student also measured the distance between the lens and the image.
Table 2 gives both of the distances measured and the magnification.

Table 2

Distance between the lens and the image in cm	Distance between the lens and the object in cm	Magnification
100	25	4.
60	30	0
40	40	2.
33	50	0
30	60	1.

Consider the data in Table 2.
0
Give a second way that the student could have determined the magnification of the object.
Justify your answer with a calculation. (separate only)
7
0.

5
\qquad
\qquad
\qquad
\qquad
(2)
(Total 9 marks)
4. The figure below shows an incomplete electromagnetic spectrum.

| A microwaves | B | C | ultraviolet | D | gamma |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) What name is given to the group of waves at the position labelled \mathbf{A} in the figure above?

Tick one box.
infrared

radio

visible light

X-ray

(b) Electromagnetic waves have many practical uses.

Draw one line from each type of electromagnetic wave to its use.

Electromagnetic wave

Use

(c) Complete the sentence.

Use an answer from the box.

black body	ionising	nuclear

X-rays can be dangerous to people because X-rays are
\qquad radiation.
5. Small water waves are created in a ripple tank by a wooden bar. The wooden bar vibrates up and down hitting the surface of the water.
The figure below shows a cross-section of the ripple tank and water.

(a) Which letter shows the amplitude of a water wave?

Tick one box.

J

K

L
(b) The speed of the wooden bar is changed so that the bar hits the water fewer times each second.

What happens to the frequency of the waves produced?

Tick one box.

Increases \square

Does not change \square

Decreases

(c) Describe how the wavelength of the water waves in a ripple tank can be measured accurately.
\qquad
-
\qquad
-
\qquad
_
(d) The speed of a wave is calculated using the following equation.
_ wave speed $=$ frequency \times wavelength
The water waves in a ripple tank have a wavelength of 1.2 cm and a frequency of 18.5 Hz .
How does the speed of these water waves compare to the typical speed of a person walking?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(4)
(Total 8 marks)

A trolley is attached to two identical springs.
The trolley is pushed to the left and then released.
Figure 1 shows the horizontal forces acting on the trolley just after it is released.
Figure 1

(a) Write the equation which links acceleration, mass and resultant force.
\qquad
(b) The trolley has a mass of 0.75 kg Calculate the acceleration of the trolley just after it is released. Give the unit.
\qquad
\qquad
-
\qquad
-

-
An elastic cord is fixed to the trolley.
Figure 2 shows the arrangement viewed from above.
Figure 2

View from above

When the trolley is pushed and released a wave travels along the cord.
(c) What type of wave travels along the cord?
_ Give the reason for your answer.
\qquad
-
\qquad
(d) Suggest one change that could be made to the apparatus shown in Figure 2 to produce a wave with a lower frequency.
\qquad
\qquad

Figure 1 shows a water wave.

Figure 1

(a) What type of wave is a water wave?

Tick $\left({ }_{V}\right)$ one box.

Electromagnetic

Longitudinal

Transverse

(b) Which statement describes the movement of the water at point \mathbf{X} ?

Tick (v) one box.

The water at point \mathbf{X} does not move.

The water at point \mathbf{X} moves to the left and right.

The water at point \mathbf{X} moves up and down.

(c) The wave has a frequency of 2.0 hertz.

The wavelength is 0.032 metres.
Calculate the wave speed.
Use the equation:

$$
\text { wave speed }=\text { frequency } \times \text { wavelength }
$$

Choose the unit from the box.

$\mathrm{m} 2 / \mathrm{s}$	m / s	s 2

\qquad
\qquad
\qquad
Wave speed = \qquad Unit \qquad
(d) What is transferred by all waves?

Tick (${ }_{V}$) one box.
Energy

Information \square

Water \square

Figure 2 shows four water waves.
The waves are all drawn to the same scale.
The waves all travel at the same speed.
Figure 2

(e) Which wave has the longest wavelength?

Tick $\left({ }_{V}\right)$ one box.
A \square
B \square
C \square
D \square
(f) Which wave has the highest frequency?

Tick (\sqrt{V}) one box.
A

B

C \square
D \square
8. The graph below shows how a lens forms an image of an object.

(a) What type of lens is represented in the graph above?

Tick (${ }_{V}$) one box. (separate only)

Concave

Convex

Diverging

(b) Measure the image height and the object height in the graph above. (separate only)

$$
\begin{aligned}
& \text { Image height = _______________cm } \mathrm{cm} \\
& \text { Object height = }
\end{aligned}
$$

(c) Calculate the magnification produced by the lens.

Use the equation:
(separate only)

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

\qquad
-
\qquad
-
\qquad

- Magnification = \qquad
(d) Which two words describe the image in the graph above?

Tick (V) two boxes._(separate_nly)

- Enlarged

Inverted \square

Real

Upright

Virtual

(e) The object was blue.

A student looked at the blue object through a green filter.
Complete the sentences.
Choose answers from the box.
(separate only)

black	blue	green	red	white

Looking at the blue object through a green filter makes the object appear \qquad _.

This is because the green filter only transmits the light that is \qquad _.
9. Figure 1 shows some waves.

Figure 1

(a) Which arrow represents the wavelength of the waves?

Tick (\sqrt{V}) one box.

P

Q

R

S

(b) Which arrow represents the amplitude of the waves?

Tick $\left({ }_{V}\right)$ one box.
P

Q

R

S

(c) The waves have a frequency of 0.20 hertz.

Calculate the period of the waves.
Use the equation:

$$
\text { period }=\frac{1}{\text { frequency }}
$$

\qquad
(d) The frequency of the waves is increased. The speed of the waves stays the same.

What happens to the wavelength of the waves?
Tick (V) one box.

The wavelength decreases.

The wavelength increases.

The wavelength stays the same.

A student investigated how the speed of water waves is affected by the depth of water in a tray.
Figure 2 shows some water in a rectangular tray.
Figure 2

The student lifted one end of the tray and then dropped it.
This made a wave which travelled the length of the tray.
(e) The student measured the length of the tray.

What else should the student measure in order to calculate the speed of the wave?
Tick (\vee) one box.

Area of the bottom of the tray

Depth of water in the tray

Temperature of the water in the tray

Time taken by the wave to travel the length of the tray

(f) What was the independent variable in this investigation?

The graph below shows the results.

(g) Give one conclusion that can be made from the graph.
\qquad
-
\qquad
(h) What was the speed of a wave when the depth of water was 2.5 cm ?
Speed of wave =
\qquad m/s
10. (a) Visible light is used for communications.

Which other parts of the electromagnetic spectrum are used for communications?
Tick (V) two boxes.

The diagram below shows a ray of light in an optical fibre.

(b) What is the name given to the dotted line on the diagram? (separate only)
\qquad
(c) Where the ray of light touches the edge of the optical fibre it is reflected. Draw the reflected ray on the diagram above.
(separate only)
(d) Optical fibres need to be able to bend around corners without breaking. Suggest the property that optical fibres must have to allow them to bend around corners.
(separate only)
\qquad
(e) The appearance of visible light can change when it interacts with different objects.

Complete the sentences.
Choose the answers from the box.
Each answer may be used once, more than once or not at all.
(separate only)

absorbed	reflected	refracted	transmitted

When white light is incident on a green filter, only green light passes through the filter.
This is because green light is \qquad by the filter.

All other colours of light are \qquad by the filter.

When red light shines on a blue object the red light is \qquad .
11. (a) The diagram below shows the position of three types of wave in the electromagnetic spectrum.

A	Microwaves	B	Visible light	C	D	Gamma rays

Which letter represents the position of X-rays in the electromagnetic spectrum?
Tick (\checkmark) one box.
A

B

C

D \square

A doctor needs to obtain an image of a bone in a patient's injured arm.
The doctor takes an X-ray of the arm.
(b) Give one possible harmful consequence of receiving a dose of X-ray radiation.
\qquad
-
\qquad
The table below gives information about two methods of bone imaging.

Method	Radiation dose in millisieverts
X-ray of arm	0.1
CT scan of arm	6.0

(c) Compare the risk of harm to the patient of having an X-ray rather than a CT scan.
\qquad
\qquad
\qquad
\qquad
(d) Which of the following is the same as 6.0 millisieverts?

Tick (${ }_{V}$) one box. (separate only)
0.60 sieverts

0.060 sieverts

0.0060 sieverts

0.00060 sieverts

(e) The patient received a total radiation dose of 2.5 millisieverts during one year.

Calculate the percentage of this dose that came from one X-ray of the arm.
Use the data in the table above. (separate only)
\qquad
-
\qquad

- Percentage = ___________ \%

12. (a) Figure $\mathbf{1}$ shows the position of three types of wave in the electromagnetic spectrum.

Figure 1

A	Microwaves	B	Visighle $_{\text {light }}$	C	D	Gamma $_{\text {rays }}$

Which letter represents infrared in the electromagnetic spectrum?
Tick (\vee) one box.
A

B

C

D \square
(b) What is infrared used for?

Tick (${ }_{V}$) one box.

Electrical heating

Energy efficient lamps \square

Satellite communications

Sun tanning

An infrared camera produces a colour image. Different colours show different temperatures.
People emit infrared radiation. Figure 2 shows how the colour of the image of a person on an infrared camera depends on the person's body temperature.

Figure 2

(c) Complete the sentence.

Choose the answer from the box.

orange	red	yellow

The image produced by an infrared camera of a person with a body temperature of $37^{\circ} \mathrm{C}$ is mainly \qquad .
(d) Rescue workers use infrared cameras to search for people trapped under rubble after an earthquake.

How does the image of a trapped person change if the person's body temperature drops from $37^{\circ} \mathrm{C}$ to $33^{\circ} \mathrm{C}$?
\qquad
\qquad
\qquad

A student investigated how the type of surface affects the amount of infrared the surface radiates.

Figure 3 shows the equipment used.

Figure 3

(e) Complete the sentence.

Choose the answer from the box.

a control	the dependent	the independent

In this investigation the type of surface is \qquad variable.
(f) Describe how the equipment shown in Figure $\mathbf{3}$ would be used to compare the infrared radiation emitted from the vertical surfaces of the cube.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The table below shows the results.

Type of surface	Temperature in $^{\circ} \mathbf{C}$
Matt black Matt	68.0
white Shiny	65.5
black Shiny	66.3
silver	28.0

(g) What is the resolution of the infrared detector? Tick (V) one box.
$0.1^{\circ} \mathrm{C}$

$1.0^{\circ} \mathrm{C}$ \square
$1.7^{\circ} \mathrm{C}$

$68.0^{\circ} \mathrm{C}$

The bar chart in Figure 4 shows two of the results.
Figure 4

(h) Complete the bar chart to show all of the results.
(i) Give one conclusion that can be made from the results.
\qquad
\qquad
\qquad

A student used a ray box and glass block to investigate refraction of light.
The figure below shows a ray of light entering the glass block.

(a) In the figure, the angle of incidence is labelled with the letteri.

Label the angle of refraction in the figure with the letter \boldsymbol{r}. (separate only)
(b) Measure the angle of incidence in the figure above. (separate only)

$$
\begin{aligned}
& \text { Angle of incidence }= \\
& \circ
\end{aligned}
$$

(c) Complete the figure above to show the path taken by the ray of light through the glass block and out into the air. (separate only)
(d) Complete the sentence.

Choose an answer from the box.
(separate only)

random	systematic	zero

The student repeated the measurement three times and calculated the mean to reduce the effect of \qquad errors.

The following table shows the student's values for the angles of incidence and the mean angles of refraction.

Angle of incidence in degrees	Mean angle of refraction in degrees
2	13
0	19
3	31
0	31

4
(e) For an angle of incidence of 40° the three measurements for the angle of refraction were: 0 $23^{\circ} \quad 27^{\circ} \quad 25^{\circ}$

Calculate the value of \mathbf{X} 解 the table above. (separate only)
0
\qquad

$$
\begin{aligned}
& X= \\
& \text { - }
\end{aligned}
$$

(f) Complete the sentence.

Choose the answer from the box. (separate only)

equal to	greater than	less than

The student used the data in the table above and correctly concluded that the angle of refraction is \qquad the angle of incidence used.
(g) Why is the student's conclusion only valid for angles of incidence between 20° and 50° ? (separate only)
\qquad
\qquad
(h) The student repeated the investigation using a transparent plastic block. Why did the student use a transparent block and not an opaque block?
\qquad
-
\qquad
(i) The student wanted to compare the refraction caused by the plastic with the refraction eausectbythe-gtass.

What must the student keep the same for both the plastic block and the glass block?
Tick (V) one box. (separate only)

The angles of incidence tested

The angles of refraction tested

The number of results recorded

The size of the two blocks

14. (a) Figure 1 shows parallel rays of light being refracted by a convex lens.

Figure 1

What is distance ' \mathbf{X} ' called?(separate only)
(b) Lenses can be used to form the image of an object.

Complete the ray diagram in Figure 2 to show how a convex lens forms the image of the object.
Use an arrow to represent the image.(separate only)

Figure 2

Figure 3 shows how a concave lens forms the image of an object.
Figure 3

(c) Give one similarity and one difference between the image formed by the convex lens and the image formed by the concave lens.(separate only)

Similarity \qquad
\qquad
Difference \qquad
\qquad
(d) A person uses a lens to read the letters on the back of a coin.

The image height of the letters on the coin is 9.0 mm
The magnification produced by the lens is 6.0

Calculate the height of the letters on the coin. Use the Physics Equations sheet.

> (separate only)
\qquad
-
\qquad
-

(Total 8 marks)
15. The fotlowing figure shows the āpparatus used tō investigate the wāves in ā stretched string.

The frequency of the signal generator is adjusted so that the wave shown in the figure is seen.
At this frequency the string vibrates between the two positions shown in the figure.
(a) The wavelength of the wave shown in the figure above was measured as 80 cm

What piece of apparatus would have been suitable for measuring this wavelength?
\qquad
(b) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(c) The string in the figure above vibrates at 55 Hz

Calculate the wave speed of the wave shown in the figure. Use data given in the figure.
\qquad
-
\qquad

\qquad
(d) The frequency of the signal generator is increased.

This makes the wavelength of the wave change. The wave speed stays the same.
Describe how the apparatus could be adjusted to show one complete wave without reducing the frequency.
$-$
\qquad
\qquad
(e) A student wants to investigate how the speed of a wave on a stretched string depends on the tension in the string. The student uses the apparatus in the figure above. Describe a method the student could use for this investigation.
\qquad
(Total 11 marks)
16. The graph shows how a concave lens forms an image of an object.

(a) Which point on the graph above marks the position of the principal focus of the lens? Tick one box. (separate only)
A

B

C

D

(b) Which two words describe the image?

Tick two boxes. (separate only)

Enlarged

Inverted

Real

Upright

Virtual

(c) Calculate the magnification produced by the lens. (separate only) Use the equation:

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

-

\qquad
-
\qquad
(d) Complete the sentence.

Choose an answer from the box.
(separate only)

decrease	increase	not change

As the object is moved further away from the lens, the size of the image will \qquad .

The diagram below shows a ripple tank that a student used to investigate water waves.

(a) The student adjusted the speed of the motor so that the bar hit the water more times each second.

What happened to the frequency of the waves produced?
Tick one box.

Decreased

Did not change \square

Increased

(b) Describe how the frequency of the water waves in the ripple tank can be measured.
\qquad
-
\qquad
-
\qquad
(c) The student measured the frequency of the water waves as 5 hertz.

Calculate the period of the water waves.
Use the equation:
-

$$
\text { period }=\frac{1}{\text { frequency }}
$$

Choose the unit.

metres	metres / second	seconds

\qquad
\qquad
\qquad
\qquad
Period $=$ \qquad Unit $=$ \qquad
18. Some objects are transparent and some objects are opaque.
(a) Which one of the objects in Figure $\mathbf{1}$ is transparent?

Tick one box.
Figure 1

Book

Pencil rubber

Glass vase

Ceramic mug

(b) Complete the sentence.

Choose an answer from the box.

absorb	reflect	transmit

An opaque object does not \qquad light.

A student wears a white T-shirt and a red baseball cap to a party.
(c) Why does the T-shirt look white in white light?
\qquad
-
(d) Explain how the colour of the baseball cap appears to change when the room lights at the party change from white to blue.
\qquad
\qquad
\qquad
\qquad

A student investigated how the type of surface affects the amount of infrared radiation the surface absorbs.

Figure 2 shows the equipment that the student used.
Figure 2

The metal sheets absorb infrared radiation. The wax melts and the drawing pins fall off the surfaces.
(e) In the investigation there are several variables.

Draw one line from each variable to the correct description of that variable.

Variable

Distance from the metal sheets to the infrared heater.

The surface colour of the metal sheets.

Time taken for the drawing pins to fall off.
(f) What is the main hazard in this investigation?
\qquad
\qquad
(g) The drawing pin attached to the matt black metal sheet fell off first.
What can be concluded from this result?
\qquad
-

The diāgram below shows the position of three types of wave in the electromagnetic spectrum.

Radio waves	A	B	C	Ultraviolet	X-rays	D

(a) Which position shows where visible light is in the spectrum?

Tick one box.
A

B

C

D \square
(b) Which one of the statements about electromagnetic waves is correct?

Tick one box.

Radio waves have a higher frequency than X-rays.

Radio waves have a longer wavelength than ultraviolet.

X-rays have a longer wavelength than radio waves.

X-rays travel faster through the air than ultraviolet.

(c) Give one possible danger of exposing your skin to ultraviolet radiation.
\qquad
\qquad
(d) Having an X-ray taken exposes a person to ionising radiation.

The table below gives the average radiation dose for an X-ray of the chest and an X-ray of the upper digestive system.

Part of the body	Radiation dose in millisieverts (mSv)
Upper digestive system	5.0
Chest	0.1

The risk of an X-ray causing cancer is about 1 in 20000 for each mSv of radiation received.
Compare the risk of developing cancer from having an X-ray of the upper digestive system with the risk from having an X-ray of the chest.
Use the data in the table.
\qquad
\qquad
\qquad
\qquad

P-waves and S-waves are two types of seismic wave caused by earthquakes.
(a) Which one of the statements about P -waves and S -waves is correct?

Tick one box.(separate only)

P-waves and S-waves are transverse. \square

P-waves and S-waves are longitudinal. \square

P-waves are transverse and S -waves are longitudinal.

P-waves are longitudinal and S-waves are transverse.
\square

Seismometers on the Earth's surface record the vibrations caused by seismic waves.
The diagram below shows the vibration recorded by a seismometer for one P-wave.

(b) Calculate the frequency of the P -wave shown in the diagram above.
\qquad
\qquad
Frequency $=$ \qquad Hz
(c) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(d) The P-wave shown in the diagram above is travelling at $7200 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the P -wave.
\qquad
\qquad
\qquad
\qquad
Wavelength $=$ \qquad m
(e) Explain why the study of seismic waves provides evidence for the structure of the Earth's core. (separate only)
\qquad
-
\qquad
-
\qquad
-
(a) Which one of the following is not an electromagnetic wave?

Fick onebox.

-
Sound

Ultraviolet

X-rays

(b) What type of electromagnetic wave do our eyes detect?
(c) What is a practical use for infrared waves?

Tick one box.

Cooking food

Energy efficient lamps

Medical imaging

Satellite communications

Scientists have detected radio waves emitted from a distant galaxy.
Some of the radio waves from the distant galaxy have a frequency of 1200000000 hertz.
(d) Which is the same as 1200000000 hertz?

Tick one box.
1.2 gigahertz

1.2 kilohertz
1.2 megahertz

1.2 millihertz

(e) Radio waves travel through space at 300000 kilometres per second (km / s).

How is $300000 \mathrm{~km} / \mathrm{s}$ converted to metres per second (m/s)?
Tick one box.
$300000 \div 1000=300 \mathrm{~m} / \mathrm{s}$

$300000 \times 1000=300000000 \mathrm{~m} / \mathrm{s}$

$300000+1000=301000 \mathrm{~m} / \mathrm{s}$

$300000-1000=299000 \mathrm{~m} / \mathrm{s}$

(f) Write the equation which links frequency, wavelength and wave speed.
(g) Calculate the wavelength of the radio waves emitted from the distant galaxy. Give your answer in metres.
\qquad
\qquad

