Mark schemes

1. (a) B
(b) a control
after five minutes record the (final) temperature from both flasks allow calculate the temperature increase / change after five minutes
see / check if the temperature inside the flasks had increased by different amounts
(d) $27\left({ }^{\circ} \mathrm{C}\right)$
allow $27\left({ }^{\circ} \mathrm{C}\right)$ identified on the table
allow test 3
(e) ignore (the result)
allow repeat (the result)
(f) $(33 / 3=) 11$
(g) the black flask absorbed the most infrared during the five minutes
2. Level $\mathbf{3}$ (5-6 marks):

A detailed and coherent plan covering all the major steps is provided. The steps in the method are logically ordered. The method would lead to the production of valid results.

A source of inaccuracy is provided.

Level 2 (3-4 marks):

The bulk of a method is described with mostly relevant detail. The method may not be in a completely logical sequence and may be missing some detail.

Level 1 (1-2 marks):

Simple statements are made. The response may lack a logical structure and would not lead to the production of valid results.

0 marks:

No relevant content.

Indicative content

place a glass block on a piece of paper
draw around the glass block and then remove from the paper
draw a line at 90° to one side of the block (the normal)
use a protractor to measure and then draw a line at an angle of 20° to the normal
replace the glass block
using a ray box and slit point the ray of light down the drawn line
mark the ray of light emerging from the block
remove the block and draw in the refracted ray
measure the angle of refraction with a protractor
repeat the procedure for a range of values of the angle of incidence

possible source of inaccuracy

the width of the light ray
which makes it difficult to judge where the centre of the ray is
3. (a) magnification $=\frac{\text { image height }}{\text { object height }}$
dividing by an object height of 1 cm gives the same (numerical) value
(b) accept anything practical that would work eg:
use a taller object
use a (travelling) microscope
attach a scale to the screen and use a magnifying glass
(c) both points plotted correctly
correct line of best fit drawn
a curve passing through all points (within $1 / 2$ square), judge by eye
(d) values of 1.4 and 0.6 extracted from the graph
2.33 times bigger
accept any number between 2.3 and 2.5 inclusive
(e) by dividing the distance between the lens and the image by the distance between the lens and the object
at least one correct calculation and comparison eg 100 $\div 25=4$ which is the same as the measured magnification
4. (a) radio
(b)

award 1 mark for each correct line
if more than one line is drawn from any em wave then none of those lines gain credit
(c) ionising
(c) use a metre rule / 30 cm ruler to measure across 10 (projected) waves accept any practical number of waves number for 10
and then divide by 10
1
(d) $1.2 \mathrm{~cm}=0.012 \mathrm{~m}$
$18.5 \times 0.012=0.22(2)(\mathrm{m} / \mathrm{s})$
allow 0.22(2) with no working shown for $\mathbf{2}$ marks
typical walking speed $=1.5 \mathrm{~m} / \mathrm{s}$
accept any value e.g. in the range 0.7 to $2.0 \mathrm{~m} / \mathrm{s}$
so the water waves are slower (than a typical walking speed)
this cannot score on its own
6.
(a) (resultant) force $=$ mass \times acceleration allow $F=m a$ symbols must be correct
(b) $(2.7-1.5)=0.75 \times a$
an answer of 1.6 scores $\mathbf{3}$ marks
$a=\frac{1.2}{0.75}$
allow compensation marks for correct use of incorrect resultant force
$a=1.6$
m/s2
(c) transverse
the oscillation / vibration is perpendicular to the direction of energy transfer
allow wave travel for energy transfer
(d) use springs with a smaller spring constant
allow use weaker springs
or
use a trolley with greater mass
allow use a heavier trolley
do not accept use a larger trolley
allow add a mass / weight to the trolley
(Total 8 marks)
7. (a) transverse
(b) the water at point \mathbf{X} moves up and down
(c) $v=2.0 \times 0.032$
$v=0.064(\mathrm{~m} / \mathrm{s})$
m / s
(d) energy
(e) \mathbf{D}
(f) \mathbf{B}
8. (a) convex
(b) In Exampro, the measurement of 0.8 cm or 2.0 cm will depend on the printing of the exported diagram and should therefore be checked by the teacher/student using this mark scheme.
image height $=0.8$ (cm)
and
object height $=2(.0 \mathrm{~cm})$
both correct for $\mathbf{1}$ mark
1
(c) magnification $=$ magnification $=\frac{0.8(\mathrm{~cm})}{2(.0 \mathrm{~cm})}$
allow their measured object and image heights from question (b)
magnification $=0.4(0)$
(d) inverted
real
(e) black
this order only
green
9. (a) R

1
(b) S
(c) $\mathrm{T}=\frac{1}{0.20}$
T = 5(.0 s)
(d) The wavelength decreases
(e) Time taken by the wave to travel the length of the tray
(f) Depth of water
(g) as the depth increases, the speed increases allow positive correlation (between speed and depth)
(h) $\quad 0.49(\mathrm{~m} / \mathrm{s})$
10. (a) Microwaves

Radio waves
(b) normal
(c) reflected ray drawn to the right of the normal ignore arrows
correct ray of light drawn using a ruler with $i=r$

(d) they need to be flexible ignore bendy / ductile / malleable / elastic
(e) transmitted

1
absorbed
absorbed
11. (a) D
(b) Any one from:

- mutation (of genes/DNA/chromosomes)
allow can damage OR destroy genes/DNA/chromosomes ignore damage/destroy cells/tissues/organs ignore mutates cells
- cancer/tumour
- cell death allow kills cells
(c) the risk of harm is lower from the X-ray

$$
\text { by a factor of } 60
$$

(d) 0.0060 sieverts
(e) $\frac{0.1}{2.5} \times 100$

4 (\%) allow 0.04 for 1 mark
12. (a) B
(b) electrical heating
(c) orange
allow a correct answer indicated in the box provided the answer space is blank
(d) becomes (more) red allow changes from mainly orange to mainly red
(e) the independent
allow a correct answer indicated in the box provided the answer space is blank
(f) pour (hot) water into the (hollow metal) cube
point the IR detector at each / a side and take a reading allow point the IR detector at the cube and take a reading
allow IR detector touching the surface and take a reading allow take the temperature for take a reading
keep the detector the same distance from each surface
(g) $0.1^{\circ} \mathrm{C}$
(h) one bar drawn to $68.0\left({ }^{\circ} \mathrm{C}\right)$
ignore the position of the bars on the x-axis
one bar drawn to $28.0\left({ }^{\circ} \mathrm{C}\right)$
tallest bar labelled Matt black and shortest bar labelled Shiny silver
(i) any one from:

- (matt) black is the best emitter
- shiny silver is the worst emitter
allow matt white and shiny black are (almost) the same at emitting allow black is a good emitter
allow silver is a poor emitter
allow an answer in terms of highest / lowest temperature
ignore any reference to absorption / reflection

13. (a) correct angle labelled answer must indicate the angle, the letter r on it's own is insufficient

(b) 58 (degrees)
allow 57 to 59 inclusive
(c) ray continues in a straight line to the edge of the block
ray refracts away from the normal

both rays in the air should be parallel judge by eye
(d) random
allow a correct answer indicated in the box provided the answer space is blank
(f) less than
allow a correct answer indicated in the box provided the answer space is blank
(g) there is no data/results outside of that range
allow that is all the student measured
(h) light would not pass through an opaque block or light will pass through a transparent block an answer which does not refer to either transparent or opaque should be taken as referring to transparent
(i) The angles of incidence tested
14. (a) focal length this answer only
(b) one correct line drawn from the top of the object, passing through the lens and crossing or meeting given line
ignore any arrow drawn on the line
if two lines are drawn, both must be correct
inverted image drawn at the correct position and length
arrowhead required
(c) similarity
(both are) diminished
difference
concave is virtual and convex is real
or
concave is upright and convex is inverted allow smaller for diminished a comparison must be made ignore reference to positions of images
(d)

$$
\text { an answer of } 1.5(\mathrm{~mm}) \text { scores } 3 \text { marks }
$$

$6.0=\frac{9.0}{\text { object height }}$
object height $=\frac{9.0}{6.0}$
object height $=1.5(\mathrm{~mm})$
provided working can be seen, an attempt to convert 9.0
mm to cm or m with all other steps correct scores 2 marks
15. (a) metre rule

> allow metre ruler
allow tape measure
do not accept ruler
do not accept metre stick
(b) (wave) speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(c)
an answer of $44(\mathrm{~m} / \mathrm{s})$ scores $\mathbf{3}$ marks
$80 \mathrm{~cm}=0.8 \mathrm{~m}$
$v=55 \times 0.8$
this mark may be awarded if wavelength is incorrectly or not converted
$\mathrm{v}=44(\mathrm{~m} / \mathrm{s})$
allow correct calculation using an incorrectly or not converted wavelength
an answer of $4400(\mathrm{~m} / \mathrm{s})$ scores 2 marks
(d) move the (wooden) bridge
to the right
dependent on 1st mp being scored

OR
change the mass/weight (on the string) scores 1 mark add more masses/weights (to the string) scores both marks
(e) Level 2: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content
add or take away masses from the string (ignore any stated values)
adjust frequency using the signal generator and/or move the wooden bridge
observe a steady / stationary pattern measure the wavelength
calculate wave speed from frequency and wavelength
a Level 1 answer should include a way of changing tension a complete Level 2 answer would include either changing frequency and/or moving the bridge
16. (a) B
(b) upright
virtual
(c) image height $=9.5(\mathrm{~mm})$ allow any value between 9 and 10 inclusive allow 5 (squares)
object height $=24(\mathrm{~mm})$
allow 12 (squares)
magnification $=\frac{9.5}{24}$
or
their image height
their object height
magnification $=0.4$
allow an answer that rounds to 0.4 provided both object height and image height are correct
or
their image height
their object height
ignore any units
correctly calculated
an answer of 0.4 scores 4 marks
(d) decrease
17. (a) increased
(b) (count) how many waves pass a point
in one second
this is dependent on the first mark point being awarded
or
(count) number of waves that pass a point in a given time allow a specific time for a given time
or
(count) number of waves that are produced in a given time (1) and divide by that time in seconds
this is dependent on the first mark point being awarded allow an answer in terms of measuring the frequency of the vibrating bar
(c) \quad period $=\frac{1}{5}$
period $=0.2$
seconds / s
18. (a) glass vase
(b) transmit
(c) the T-shirt reflects all wavelengths / colours of light (equally) allow T-shirt reflects (white / all) light
(d) changes from red to black
it appears black it is darker is insufficient
as the cap absorbs (all) the (blue) light
or
as the cap does not reflect the (blue) light
(e)

$$
\mathrm{C}-\text { distance }
$$

 all 3 lines correct
allow 1 mark for 1 line correct
if more than one line drawn from a variable all of those lines do not score
(f) the (infrared) heater allow infrared (radiation)
do not accept answers where burning yourself is given as the hazard
(g) answer must be a comparison, e.g. the matt / black surface is the better absorber (of infrared radiation) matt black is a good absorber is insufficient
19. (a) C
(b) radio waves have a longer wavelength than ultraviolet
(c) (risk of) skin cancer
cancer is insufficient
or
(prematurely) ageing skin
skin damage is insufficient
ignore kills skin cells
1
(d) risk is higher (for X-ray of uds than X-ray of chest)
by a factor of 50
or
risk calculated for each type of X-ray
chest X-ray $=1: 200000$ (1)
uds = 1:4000 (1)
20. (a) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question.
(b) 0.4
(c) wave speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(d) $7200=0.4 \times$ wavelength

$$
\text { wavelength }=\frac{7200}{0.4}
$$

wavelength $=18000(\mathrm{~m})$
allow up to full marks for ecf using their answer to part
(b)
a method shown as
$7200 \times 2.5=18000$
scores 0 marks
an answer 18000 scores 3 marks
(e) Regrettably, this part of the question assessed content that we had stipulated would only be assessed on the Higher tier. All students were awarded full marks for this part of the question.
21. (a) sound
(b) (visible) light
(c) cooking food
(d) 1.2 gigahertz
(e) $300000 \times 1000=300000000 \mathrm{~m} / \mathrm{s}$
(f) wave speed $=$ frequency \times wavelength

$$
\text { allow } v=f \lambda
$$

(g) $300000000=1200000000 \times \lambda$
$\lambda=\frac{300000000}{1200000000}$ allow ecf from (e)
$\lambda=0.25(\mathrm{~m})$

