Questions Q1. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . Figure 1 shows a diagram of the heart. Figure 1 (i) Draw arrows on Figure 1 to show how oxygenated blood moves through the heart. (1) (ii) What happens when the right ventricle contracts? (1) - □ A valve T opens - C blood is forced into the left atrium - D blood is forced into the pulmonary vein (iii) Draw one straight line from each structure to its function. Q2. Figure 9 shows the structure and actual size of red blood cells (erythrocytes). (Source: © N.Vinoth Narasingam/Shutterstock) Figure 9 (i) Calculate the image size of the top view of this red blood cell if this cell is magnified $400\times$. Give your answer in mm. (2) | mm | |--| | (ii) Explain how the shape of a red blood cell is related to its function. | | (3) | | | | | | | | | | | | | | (iii) State the role of haemoglobin inside the red blood cell. | | (1) | | | | (Total for question = 6 marks) | Q3. Figure 13 shows the heart rate of person A and person B. Person A does not do any regular exercise. Person B has been running regularly for one year. The stroke volume for person B before exercising was 61 ml per beat. Calculate the cardiac output for person B before exercising. Give your answer in litres per minute. |
litres | per | minute | |------------|-----|--------| | | • | | Q4. Figure 10 shows the estimated blood flow through some parts of the body when a person is at rest and during exercise. | want af the banks | estimated rate of blood flow in cm³ per minute | | | | |---------------------------------|--|-----------------|--|--| | part of the body | at rest | during exercise | | | | brain | 750 | 748 | | | | heart muscle | 350 | 1 150 | | | | digestive system | 2500 | 1 200 | | | | other muscles | 1 200 | 14 500 | | | | all other organs (except lungs) | 1423 | 1420 | | | Figure 10 A person has a cardiac output of 4.9 litres per minute. The stroke volume of each heart beat is 70 ml. Calculate the heart rate. (2) |
beats per minute | |--------------------------------| | (Total for question = 2 marks) | Q5. Figure 9 shows the stroke volume at different heart rates of a person who has trained for a marathon and of a person who has not trained for a marathon. Figure 9 | (i) Compare the effect of heart rate on stroke volume of the person who has trained for a marathon with the person who has not trained for a marathon. | |--| | (2) | | | | | | | | | | | | | | (ii) Calculate the cardiac output for the person who has trained for a marathon when the heart rate is 160 beats per minute. | Give the units in your answer. (3) Q6. Figure 13 shows the heart rate of person A and person B. Person A does not do any regular exercise. Person B has been running regularly for one year. Figure 13 Both people rested for the first 6 minutes, then did the same high intensity exercise for the next 12 minutes, then rested. Compare the heart rates of person A with the heart rates of person B. | |
 |
 |
 | |---|------|------|------| | |
 |
 |
 | | |
 |
 |
 | | | | | | | | | | | | |
 |
 |
 | | |
 |
 |
 | | | | |
 | | | | | | | • |
 |
 |
 | Q7. Blood from the body enters the heart through the vena cava. Describe how this blood flows through the heart and lungs to leave the heart through the aorta. Include references to the chambers of the heart and the relevant valves in your answer. | (6 | |------| |
 | |
 |
 | | | Q8. Figure 11 shows the time taken for blood to clot at different temperatures. | temperature
in °C | time taken for blood
to clot in seconds | |----------------------|--| | 5 | 90 | | 15 | 70 | | 25 | 55 | | 35 | 40 | | 45 | 110 | Figure 11 (i) Draw a graph to show the data in Figure 11. | | (2) | |---|-----| | 1 | | | | | | | | | 2 | | | | | | | | | | | (Total for question = 5 marks) (3) # Edexcel Biology GCSE - The Circulatory System Q9. | plain how one structure of a vein helps the blood return to the heart. | |--| | | | | | | | | | | | (Total for question = 2 marks) | Q10. Figure 2 shows a dissected vein. Figure 2 | (i) Explain how the valves in veins help the blood, at low pressure, flow towards the heart. | |--| | (2) | | | | | | | | | | | | | | (ii) The equipment used to dissect the vein was cleaned and put into disinfectant. | | State why this equipment was put into disinfectant. | | (1) | | | | | | | | (Total for question = 3 marks) | # Edexcel Biology GCSE - The Circulatory System Q11. Carbon dioxide is carried in blood plasma. Human blood also contains red blood cells and white blood cells. | Explain how the structure of red blood cells and white blood cells is related to their function. | |--| | (6) | Q12. * Figure 18 shows the structure of the human heart. Figure 18 | Explain how the structure of the heart is related to its function. | | |--|----| | | 6) | #### Edexcel Biology GCSE - The Circulatory System | _ | | _ | | |----|-----|----|--| | ſ١ | 1 | -2 | | | v | - 1 | J | | | O | 1.1 | | | | 1.1 | | |------|-------|--------------------|---------|-----|----------|--------| | Some | ทเกกส | transfusions | contain | rea | ทเกกส | CEIIC | | | DIOUU | 11 41 13 143 10 13 | Contain | ıcu | ω | ociio. | Red blood cells are stored in a solution containing 5.0% glucose and 0.9% salt. Explain why red blood cells cannot be stored in pure water. | (3) | |------| | | | | | | | | | •••• | |
 | |
 | |
 | | | | | | ••• | Q14. Figure 21 shows the circulatory system of a frog. Figure 21 Explain why the circulatory system of a frog is less efficient at carrying oxygen to the tissues than the circulatory system of a human. | 3) | |----| Q15. Figure 13 shows the heart rate of person A and person B. Person A does not do any regular exercise. Person B has been running regularly for one year. Figure 13 The cardiac output for person A during exercise was 5.5 litres per minute. during exercise. Explain why the heart rate for person A needed to be higher than the heart rate for person B | Q16. | | |--|--------------------------------| | (i) Give a reason why veins have valves. | | | | (1) | | | | | (ii) Name the artery that transports oxygenated blood from | the heart to the body. | | | (1) | | | | | | (Total for question = 2 marks) | Q17. Figure 10 shows the estimated blood flow through some parts of the body when a person is at rest and during exercise. | want af the bade | estimated rate of blood flow in cm³ per minute | | | | | |---------------------------------|--|-----------------|--|--|--| | part of the body | at rest | during exercise | | | | | brain | 750 | 748 | | | | | heart muscle | 350 | 1150 | | | | | digestive system | 2500 | 1 200 | | | | | other muscles | 1 200 | 14 500 | | | | | all other organs (except lungs) | 1423 | 1420 | | | | Figure 10 The stroke volume is the amount of blood leaving one chamber of the heart per beat. From which chamber of the heart does this volume of oxygenated blood flow? | | | (| |-------|---|---| | | left atrium | (| | B C D | left ventricle
right atrium
right ventricle | | | റ | 1 | 8 | |---|---|---| | Inculin | ic n | nroduiced | hv an | endocrine | nland | and id | e tranci | nortad i | n tha | hland | |-------------|------|-----------|-------|-----------|--------|--------|----------|----------|----------|--------| | II ISUIII I | 10 p | nouuccu | Dy an | CHUOCHILC | giaila | ana | s uans | porteu i | 11 11110 | DIOUU. | (i) Which row shows the endocrine gland and the target organs for insulin? | | | | | (1 |) | |-----------|------------------|---|---|--|----| | | | endocrine gland | target organs | | | | \otimes | A | adrenal | liver and muscles | | | | | В | adrenal | small and large intestines | | | | | C | pancreas | liver and muscles | | | | ** | D | pancreas | small and large intestines | | | | (ii) Wł | nich | part of the blood transport | s insulin to its target orga | ins? | | | | A
B
C
D | plasma
red blood cells
white blood cells
platelets | | (1 |) | | | | | | (Total for question = 2 marks | 5) | | our ı | min | ne question with a cross
d about an answer, put a
with a cross ⊠. | in the box you think is
a line through the box | correct ⊠. If you change
∄ and then mark your new | | | | | part of the blood causes bl | and to start platting? | | | | (1) VVII | icii į | Jail of the blood causes bi | ood to start clotting? | (1 |) | | ■ A | е | rythrocytes | | (1 |) | | ⊠ B | ly | mphocytes | | | | | ⊠ C | | latelets | | | | | D | - | ntibodies | | | | | (ii) Giv | /e o | ne advantage of a blood c | lot forming. | | | (Total for question = 2 marks) (1) | \sim | 1 | Λ | | |--------|---|---|--| | U | _ | υ | | Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box and then mark your new answer with a cross \boxtimes . When skin is cut a blood clot forms. Which part of the blood starts the clotting process? □ A red blood cells ■ B water C platelets D white blood cells Q21. Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box and then mark your new answer with a cross \boxtimes . Figure 1 shows human blood seen using a light microscope. | | | -0 | | | |-------------------|--|------------------------------|---------------------|------------| | | | Figure 1 | | | | | lle labelled X contro
name of organelle | ols the activities of the X? | e white blood cell. | /4 | | ☐ B rib | tochondrion
osome
romosome
cleus | | | (1 | | (ii) Use words | from the box to co | mplete the sentences | i. | (2 | | | gas | haemoglobin | hormone | | | | liquio | platelet | solid | | | | | ıbstance | | | | (iii) Describe to | wo ways that white | blood cells protect th | e body from disease | ∋ . | | 4 | | | | (2 | | 1 | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | | Q22. Figure 6 shows a cross section of an artery and a vein. Figure 6 | (i) Measu | re the le | ngth of line A and the length o | of line B in mm | ۱. | | | | |-----------|-----------|---------------------------------|-----------------|-------------|-----------|--------|------| | line | Α | | | mm | line | В | (1) | | | | mm (ii) S | State the ratio | of the thic | ckness of | the | | | artery wa | ll to the | thickness of the vein wall. | | | | | | | | | | | | | | (1) | (Total for | question | = 2 ma | rks) | Q23. Red blood cells are carried in veins and arteries. Figure 20 shows the equipment used to measure the elasticity of an artery. Figure 20 | stretch before it no longer returned to its original size. | |---| | (3) | | | | | | | | | | | | | | (ii) Give one safety precaution you need to take when handling animal tissue such as blood vessels. | | (1) | | | | | | | Q24. Figure 17 shows a cross-section of an artery and a vein. (Source: © The University of Kansas Medical Center) Figure 17 | i) Explain one difference between the artery wall and the vein wall shown in Figure 17. | |---| | (2) | | | | | | | | | | | | | | ii) Name one structure that is found in veins but not found in arteries. | | (1) | | | | | | (Total for question = 3 marks) | Q25. Blood contains red blood cells, white blood cells, plasma and platelets. (i) Draw one straight line from each part of the blood to its function. Figure 2 shows some red blood cells. (Source: © SciePro/Shutterstock) Figure 2 (ii) State $\,$ two features that can be seen in the red blood cells in Figure 2. | | (2) | |---|--------------------------------| | 1 | | | | | | | | | | | | 2 | | | | | | | | | | (Total for question = 4 marks) | Q26. The effect of different types of exercise on the heart rate of an athlete was investigated. The athlete counted the number of beats in 10 seconds at the carotid artery pulse point, as shown in Figure 12. This measurement was used to calculate the heart rate. (Source: © dityazemli/Shutterstock) Figure 12 The athlete exercised for 20 minutes. The heart rate was recorded every 5 minutes during each type of exercise. | (i) State how the heart rate was calculated using this method. | | |--|-----| | | (1) | | | | | (ii) Give two ways of improving the method used to obtain the data needed to calculate the heart rate. | | | 1 | (2) | | | | | 2 | | | | | Figure 13 shows the results of this investigation. | type of exercise | heart rate in bpm | | | | | |------------------|-------------------|-----------|------------|------------|------------| | | 0 minutes | 5 minutes | 10 minutes | 15 minutes | 20 minutes | | running | 90 | 156 | 168 | 180 | 180 | | walking | 90 | 96 | 90 | 96 | 90 | Figure 13 | (iii) Comment on the difference in the heart rates during these types of exercise. | |--| | (3) | (Total for question = 6 marks | ### Mark Scheme Q1. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|--------------| | (i) | All three arrows in correct direction (1) | accept any number
of arrows showing
the correct route | (1)
AO1.1 | | Question
number | Answer | | Mark | | (ii) | B valve T closes The only correct answer is B valve T clo A is incorrect because valve T does not C is incorrect because blood is not force atrium. D is incorrect because blood is not force pulmonary vein. | open.
d into the left | (1)
AO2.1 | | Question
number | Answer | | Mark | | (iii) | structure function • carries deoxyge | enated blood | (2)
AO1.1 | | | putitionally verify | wards body organs | | | | | the right side of the heart | | |) | Reject if more than one line is drawn fro | 24
24 | | # Q2. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---------------------------------------|---|-------| | (i) | calculation
(7.5 x 400 =) 3000 (1) | | (2) | | | conversion | | A02 1 | | | (3000 ÷ 1000 =) 3 (mm) | ecf using 2.5 for 1 mark | | | | | award full marks for
correct answer with no
working | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--------------------------------------|-------| | (ii) | An explanation linking: | | (3) | | | the biconcave disc
shape (1) | accept description of biconcave disc | A01 1 | | | results in a larger
surface area (1) | | | | | so (more) oxygen can be carried (1) | accept (more) oxygen
diffused | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|------------------------|--------------| | (iii) | for oxygen to bind (inside the erythrocyte / red blood cell) | accept to carry oxygen | (1)
AO1 1 | # Edexcel Biology GCSE - The Circulatory System # Q3. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|---------| | | | Full marks for correct answer no working | (3) | | | Substitution: | | A02.1 | | | 65 x 61 (1) | Conversion 61 ÷ 1000 (1) | 7102.12 | | | Evaluation: | | | | | = 3 965 (1) | 0.061 x 65 for
substitution mark | | | | Conversion: | | | | | 3 965 ÷ 1000 = 3.965 (litres per minute) | With 3.965/4 for evaluation mark | | | | | Accept 4 or any other correct rounding | | | 3 | | | | ### Q4. | Question
number | Answer | Additional guidance | Mark | |--------------------|----------------------------|---|--------| | | Substitution | full marks for correct
answer no working | (2) | | | 4.9 ÷ 0.07 / 4900 ÷ 70 (1) | accept
4.9 ÷ 70 = 0.07 for | AO 1 2 | | | Evaluation | 1 mark | | | | 70 (beats per minute) | | | # Q5. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|-------------------------|----------------| | (i) | An answer comparing two from: • the stroke volume of the person who has trained for the marathon is (always) higher / ORA (1) | accept comparative data | (2)
AO3 2ab | | | as heart rate increases for the
person who has trained for the
marathon stroke volume
increases (1) | | | | | as heart rate increases for the
person who has not trained for
the marathon the stroke
volume {stays constant/only
increases slightly} (1) | | | | Question number | Answer | Additional guidance | Mark | |-----------------|--|--|--------------| | (ii) | cardiac output =
heart rate x stroke volume (1) | accept correct calculation
for 2 marks as equation is
implied. | (3)
AO1 1 | | | Substitution
160 x 170 = 27 200 (1) | accept range for stroke
volume of 168 -172 | | | | unit
ml per min/ ml.min ⁻¹ | accept 27.2 L.min ⁻¹ / 27.2
dm ³ .min ⁻¹ for 3 marks | | Q6. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|---------| |) ()()() | An answer comparing the following: | | (4) | | | the heart rate of person A is higher than the heart rate of person B (1) | | AO3 1ab | | | the heart rate of person A
increases more during
exercise than person B (1) | accept the rate of
increase for person A
is higher than person
B | | | | the heart rate of person B is level during exercise whereas the heart rate of person A keeps increasing (1) | | | | | person B returns to their
resting heart rate faster
than person A (1) | | | | | comparative data analysis (1) | | | # Q7. | Question
number | Indicative content | Mark | |--------------------|--|--------------| | * | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive, and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. | (6)
AO1 1 | | | AO1 (6 marks) | | | | Blood flows from vena cava into the right atrium Into the right ventricle Through valve And is pumped into the pulmonary artery Through valve to the lungs | | | | From the lungs back to the heart through the pulmonary vein Into the left atrium Into the left ventricle Through valve And is pumped into the aorta Through valve valves prevent backflow | | | Level | Descriptor | |---------|---| | | No rewardable material. | | Level 1 | Demonstrates elements of biological understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. Presents an explanation with some structure and coherence. | | Level 2 | Demonstrates biological understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas is not fully detailed and/or developed. Presents an explanation that has a structure which is mostly clear, coherent and logical. | | Level 3 | Demonstrates accurate and relevant biological understanding throughout. Understanding of the scientific ideas is detailed and fully developed. Presents an explanation that has a well-developed structure which is clear, coherent and logical. | ### Q8. | Question
number | Answer | Additional guidance | Mark | |--------------------|-------------------------------|---|-------| | (i) | Linear scale on both axis (1) | | (3) | | | Plotted points (1) | Accept accurate plotting to ½ small square | A02.1 | | | Correctly drawn graph (1) | Accept dot to dot
drawing or a freehand
single line linking
points | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|------------------------------------|---------------| | (ii) | An answer including two of the following: | | (2)
AO31ab | | | wear gloves (1) wash hands after handling
(1) | accept cover {open
wounds/cuts} | | | | sterilise equipment after
use / use sterile equipment
/ keep it in a sealed
container (1) | | | #### Q9. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|--------------| | | An answer linking two of the following: • veins contain valves (1) • which prevent the backflow of blood (1) | accept keep blood
flowing in one
direction | (2)
AO1 1 | | | OR • veins have a large lumen (1) | | | | | to maximise blood flow (1) | accept to carry a lot of blood | | #### Q10. | Question
number | Answer | Mark | |--------------------|--|--------------| | (i) | An explanation linking the following: | (2)
AO2.1 | | | the valve closes (1) | | | | (therefore) it prevents backflow (1) | | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|--------------| | (ii) | To kill bacteria / pathogens /
microorganisms / | accept to sterilise
equipment
ignore disinfect / clean
equipment | (1)
A01.2 | # Q11. | Question
number | Indicative conte | Mark | | |--------------------|--|--|-------| | * | Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. | | (6) | | | The indicative content below is not prescriptive and candidates are not required to include all the material that is indicated as relevant. Additional content included in the response must be scientific and relevant. | | A01.1 | | | AO1 (marks) | | | | | Red blood cells | | | | | structure | function • to carry oxygen | | | | • contains
haemoglobin | oxygen is joined to haemoglobin. | | | | biconcave
disc shaped | to increase surface area /
to absorb / to release
oxygen quicker | | | | • small /
flexible /
smooth | so can fit through capillaries | | | | no nucleus | so can contain more
haemoglobin | | | White blood cells | | |---|---| | <u>structure</u> | functionis part of the immune
system / fights disease | | has receptors on
membrane | can recognise pathogens / antigens | | are large cells /can
change shape / have
flexible membranes | • can engulf pathogens | | • has a nucleus / ribosomes | makes antibodies /
antitoxins /
remember antigens
from a previous
infection | # Edexcel Biology GCSE - The Circulatory System | Level | Mark | | |---------|------|--| | | 0 | No rewardable material. | | Level 1 | 1-2 | Demonstrates elements of biological understanding, some of which is inaccurate. Understanding of scientific ideas lacks detail. Presents an explanation with some structure and coherence. | | Level 2 | 3-4 | Demonstrates biological understanding, which is mostly relevant
but may include some inaccuracies. Understanding of scientific
ideas is not fully detailed and/or developed.
Presents an explanation that has a structure which is mostly clear,
coherent and logical. | | Level 3 | 5-6 | Demonstrates accurate and relevant biological understanding throughout. Understanding of the scientific ideas is detailed and fully developed. Presents an explanation that has a well-developed structure which is clear, coherent and logical. | # Q12. | Question
Number | Indicative content | Mark | |--------------------|---|-------| | * | Functions linked to structures | (6) | | | walls contract / the heart pumps blood | AO1 1 | | | atria push blood down into the ventricles | | | | ventricles pumps blood out of heart | | | | left ventricle / side pumps {blood to the body | | | | / oxygenated blood} | | | | right ventricle/ side pumps {blood to the | | | | lungs / deoxygenated blood} | | | | left ventricle wall thicker (than right ventricle | | | | wall) / produces more pressure to pump | | | | blood | | | | right ventricle is thinner / produces less | | | | pressure to pump blood | | | | valves prevent backflow /named valves | | | | prevent backflow between specific parts of | | | | the heart | | | | the muscles can contract faster / harder so | | | | that blood is pushed around the body faster | | | | the septum stops (oxygenated blood mixing | | | | with deoxygenated blood) | | | | named arteries / veins related to where | | | | blood is going to / coming from | | | Level | Mark | Descriptor | |---------|------|---| | | 0 | No rewardable material. | | Level 1 | 1-2 | Demonstrates elements of biological understanding, some of
which is inaccurate. Understanding of scientific ideas lacks
detail. | | | | Presents an explanation with some structure and coherence. | | Level 2 | 3-4 | Demonstrates biological understanding, which is mostly
relevant but may include some inaccuracies. Understanding of
scientific ideas is not fully detailed and /or developed. | | | | Presents an explanation that has a structure which is mostly
clear, coherent and logical. | | Level 3 | 5-6 | Demonstrates accurate and relevant biological understanding
throughout. Understanding of the scientific ideas is detailed
and fully developed. | | | | Presents an explanation that has a well-developed structure
which is clear, coherent and logical. | | Level | Mark | Additional Guidance | General additional quidance The level is determined by the functions covered in the response The mark within the level is determined by linking the functions to their related structures | |-------------|---|---|---| | | 0 | No rewardable material | Possible candidate responses | | Level 1 | 1-2 | An isolated function is identified the function is linked to a relevant structure | the heart pumps blood around the body the heart pumps blood around the body when the muscles contract. | | Level 2 | 3-4 | more than one
function is identified | when the heart contracts, blood is forced into the arteries. The blood on the left side does not mix with the
blood on the right side. | | | | the functions are
linked to their
relevant structures | the left ventricle has thicker walls that
push blood out through the
aorta to the body under high pressure. | | Level 3 5-6 | at least three
functions are
identified | the atria push the blood into the ventricles. This can only go this way blood can't go back up into the atria. When the ventricles contract the left walls are thicker than the right so put the blood under more pressure. | | | | | the functions are
linked to their
relevant structures | The two sides are separated by a wall of muscle which stops the oxygenated and the deoxygenated blood mixing. Blood flows back to the heart in veins. This flows into the atria which contract pushing blood into the ventricles. | # Q13. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|-------| | | An explanation linking three from: | | (3) | | | water will move into the erythrocyte (1) by osmosis (1) | accept red blood
cell for
erythrocyte | AO2 1 | | | down a concentration gradient (1) | accept from
high water
concentration to
low water
concentration | | | | causing the erythrocyte to
{burst/lyse} (1) | | | #### Q14. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|---|---------------| | 100 | An explanation including any three from: • (frogs) have one ventricle / three chambers (1) • (whereas) humans have two ventricles/ four chambers (1) • no wall / septum separating ventricles (1) • oxygenated and deoxygenated blood mix (in the ventricle / heart) (1) | guidance accept some blood going to | (3)
AO 2 1 | | | | the lungs is
already
oxygenated (1) | | ### Q15. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|---|----------------| | number | An answer linking the following: • person A had a lower stroke volume (1) • pumps less blood out per beat (1) • so needed to have a higher heart rate to get a similar cardiac output (1) • in order to exercise at the same intensity (1) • to supply oxygen/glucose to the muscles (1) | accept the heart is
not used to exercise | (3)
A03.2ab | ### Q16. | Question number | Answer | Mark | |-----------------|---|--------------| | (i) | to stop backflow of blood / to ensure blood flows in {one direction /right direction/towards the heart} / because the blood pressure in them is (too) low . | (1)
AO1.1 | | (ii) | (the) aorta | (1)
AO1.1 | | | accept phonetic spellings. Do not award if spelling is closer to artery than aorta. | | # Q17. | Question
number | Answer | Mark | |--------------------|--|--------| | | B left ventricle | (1) | | | 1. The only correct answer is B | AO 1 1 | | | A is not correct because the left atrium receives blood from the pulmonary vein | | | | C is not correct because The right atrium receives blood from the vena cava | | | | D is not correct because the right ventricle has deoxygenated blood | | ### Q18. | Question
number | Answer | Mark | |--------------------|--|--------| | (i) | C pancreas liver and muscles | (1) | | | 1. The only correct answer is C | AO 1 1 | | | A is not correct because the adrenal glands do not produce insulin | | | | B is not correct because the adrenal glands do not produce insulin and the small and large intestines are not the target organs for insulin | | | | D is not correct because the small and large intestines are not the target organs for insulin | | | Question
number | Answer | Mark | |--------------------|--|--------| | (ii) | A plasma | (1) | | | 1. The only correct answer is A | AO 1 1 | | | B is not correct because red blood cells do not transport insulin | | | | C is not correct because white blood cells do not transport insulin | | | | D is not correct because platelets do not transport insulin | | ### Q19. | Question
number | Answer | Mark | |--------------------|--|-------| | (i) | C platelets | (1) | | | The only correct answer is C platelets | AO1 1 | | | A is incorrect because erythrocytes are red blood cells which carry oxygen | | | | B is incorrect because lymphocytes are white blood cells which are part of the immune system | | | | D is incorrect because antibodies are part of the immune response | | | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--------------------------------------|-------| | (ii) | to stop blood loss /
prevent bacteria entering | Accept microorganisms/pathogen/virus | (1) | | | /stops bleeding (1) | for bacteria | A02 1 | #### Q20. | Question
number | Answer | Mark | |--------------------|---|-------| | 0. | C platelets | (1) | | | The only correct answer is C platelets | A01.1 | | | A is incorrect because red blood cells do not start the clotting process. | | | | B is incorrect because water does not start the clotting process. | | | | D is incorrect because white blood cells do not start the clotting process. | | ### Q21. | Question
Number | Answer | Mark | |--------------------|---|--------| | (i) | D nucleus | (1) | | | The only correct answer is D | AO1.1a | | | A is not correct because mitochondria do not control the white blood cell | | | | B is not correct because ribosomes do not control the white blood cell | | | | C is not correct because chromosomes are only part of organelle X | | | Question
Number | Answer | Additional guidance | Mark | |--------------------|-------------------------------|--|-------| | (ii) | haemoglobin (1)
liquid (1) | answers must be
in correct order | (2) | | | | M-12-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 | A02.1 | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|--------------------------------|-------| | (iii) | A description including two from: | | (2) | | | make antibodies | | AO1.1 | | | {surround / engulf / digest} {pathogens / bacteria / viruses} | | | | | remembers pathogens / bacteria
/ viruses (so can react quickly to
secondary infection) | accept produce
memory cells | | ### Q22. | Question
number | Answer | Additional guidance | Mark | |--------------------|--|--|--------------| | (i) | line A = 8(mm)
line B = 4(mm) | accept ±0.5mm
for both
measurements. | (1)
A02.2 | | | The below measurements are an accepted answer for modified papers. | measurements. | AU2.2 | | | The letter pre-fixing the log number denotes the size. | | | | | A4 18pt X56407 | | | | | A 8mm | | | | | B 4mm | | | | | A4 24pt Y56407 | | | | | A 8mm | | | | | B 4mm | | | | | A3 24pt Q56407 | | | | | A 12mm | | | | | B 6mm | | | | | A3 36pt V56407 | | | | | A 12mm | | | | 0 | B 6mm | | | | (ii) | 2:1 (1) | accept 8:4 / 4:2 ecf: accept a ratio of | (1)
A02.1 | |------|---------|--|--------------| | | | candidate's
measurements
of line A to line
B from i | | ### Q23. | Question
number | Answer | Additional guidance | Mark | |--------------------|---|--|----------------| | (i) | An answer that combines three of the following points to provide a method: • measure the length of the tissue (1) • add masses / mass (1) • remove the mass and measure length of the tissue (1) • repeat until the tissue no longer returns to its original length (1) | accept remove the
mass and see if the
tissue returns to its
original size | (3)
AO 3 3a | | Question
number | Answer | Additional guidance | Mark | |--------------------|--|------------------------------|---------------| | (ii) | Any one from: | ignore standard lab
rules | (1)
AO 2 2 | | | wash hands (1)wear gloves (1) | accept cover open
wounds | | | | sterilise the apparatus after use / disinfect working area (1) | | | ### Q24. | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|--------------------------------------|--------------| | (i) | An explanation linking: | accept prevent the artery bursting / | (2)
AO2 1 | | | (, , , , , , , , , , , , , , , , , , , | maintain blood
pressure | 2 | | Question
Number | Answer | Mark | |--------------------|--------------|--------------| | (ii) | valve/valves | (1)
AO1 1 | ### Q25. | Question
Number | Answer | | Mark | |--------------------|-------------------|---|--------------| | (i) | part of the blood | function | (2)
AO1 1 | | | plasma | produces oestrogen transports dissolved urea | | | | | contains haemoglobin | | | | red blood cell | produces antibodies | | | | | surrounds and digests foreign cells | | | | | | | | | | | | | Question
Number | Answer | Mark | |--------------------|--|--------------| | (ii) | Any two from: round (1) disc shaped (1) biconcave / dimple / indented on each side / large surface area (1) smooth (1) | (2)
AO2 1 | #### Q26. | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|------------------------|------------| | (i) | multiply the number of beats (in 10 seconds) by 6 | accept times by
six | (1)
AO2 | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|---|------------------------|-------------| | (ii) | Any two from: • use a heart rate monitor / | ignore use a | (2)
AO3b | | | electronic device (to measure
HR) (1) | stopwatch | | | | take readings more frequently
than 5 minutes (1) | | | | | record the pulse for longer
than 10 seconds (1) | | | | | take repeat readings / calculate a mean (1) | accept repeat it | | | Question
Number | Answer | Additional
Guidance | Mark | |--------------------|--|---|------------| | (iii) | An answer linking three from: • heart rate {remains relatively constant / fluctuates slightly} when walking (1) | accept heart rate
stays at 90
b.p.m.to 96
b.p.m. when
walking | (3)
AO3 | | | heart rate increases when running (1) | accept heart rate
is higher when
running / data
illustrating the
difference | | | | heart rate levels off {at 15 minutes / at 180 b.p.m.} when running (1) | | |