GCSE

PHYSICS
Higher Tier
Paper 1H

Specimen 2018
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:
x a ruler
x a calculator
x the Physics Equation Sheet (enclosed).

Instructions

x Answer all questions in the spaces provided.
x Do all rough work in this book. Cross through any work you do not want to be marked.
Information
x There are 100 marks available on this paper.
x The marks for questions are shown in brackets.
x You are expected to use a calculator where appropriate.
x You are reminded of the need for good English and clear presentation in your answers.
x When answering questions 02,12 and 13.4 you need to make sure that your answer:

- is clear, logical, sensibly structured
- fully meets the requirements of the question
- shows that each separate point or step supports the overall answer.

Advice
x In all calculations, show clearly how you work out your answer.
Please write clearly, in block capitals.
Centre number Candidate number
Surname
Forename(s)
\square
\square
Candidate signature

Figure 1 shows a balloon filled with helium gas.

Figure 1

[2 [2Amplarsks]
 Moving with a roose g speeds, in different directions.

Tick Jill k8xe box. Never heard of before!

Intoul energy $=$ total energy in be kinetic every store and potential en every stare of the particles in a
substance.

| 0 | 1 |
| :--- | :--- | 3

Calculate the density of helium: Choose the correct unit from the box:

$$
\text { [}{ }_{3}^{3} \text { mark k }
$$

$$
\begin{aligned}
& \text { denisty }=\frac{\text { mass }}{\text { volume }} \\
& =\frac{0.00254 \mathrm{~kg}}{0.0141 \mathrm{~m}^{3}}=\begin{array}{c}
0.1801418 \cdots \\
3 \mathrm{sg} \mathrm{~kg} / \mathrm{m}^{3}
\end{array} \\
& \text { density } \equiv \text { O. } 180 \\
& \text { Unit: } \mathrm{kg} / \mathrm{m}^{3}
\end{aligned}
$$

Turn over for the next question

There are no questions printed on this page

| 0 | 2 | Scientists sometimes replace one scientific. model with a different model. |
| :--- | :--- | :--- | :--- |

For example in the early 20th Century the plum pudding model of the atom was replaced by y the nuclear model of the atom?
 nuclear model of the atom.
nuclear model of the atom.
-detailed + logical

- clear and coherent pudding model uses replaced. Hefured alpha - deepknculedge porticlesat gold foil. Most gog the alpha particles passed straight proust the gad foil.
Thisshaued that most g en atom is empty space. Some particles hitere deflected, shaving that there is ancherged nucleus. A geul'banced book, stound nucleus has allorse mass.
These cbservations contradicted plumpudding model so it had to bereplaced.
0 h
Rubegerd alpha-
Scattering experiment
- Plum?
- Rulagord? Turn overfogtandixt question \rightarrow moray empyspace
- Observations?
- Findings?

 the consumers:
 24-hour period.

Figure 2
Figure 13

\section*{| 0 | 3^{3} |
| :--- | :--- | :--- |
 Suggest 8 Re teas f on for the shape of the graph between 15.00 and 18.000 on M8R day:}

[11manak]

There is a shorpircrease intletctal pave output, because people cone hame from schod and wick.

Gas fired power stations reduce their output when demand for electricity is low.
Gas fired power stations reduce their output when demand for electricity is low.
Suggest one time on Figure 2 when the demand for electricity was low.
Suggest one time on Figure 13 when the demand for electricity was low.

00:00 midncont

${ }_{11}$ Producung-mare electricitu_thon use need, unnecessoitly damages the enuronment?
22 Spore capacity-y a paurerstation shut down.

$$
\begin{aligned}
& \text { + conserves fuel reserves } \\
& \text { + spare-capactis to compensate for } \\
& \text { unreliable reneuluable resources } \\
& \text { TTurn ohver for the next question } \\
& \text { Turn over for the next question }
\end{aligned}
$$

A student investigated how much energy from the Sun was incident on the Earth's surface at hef l®eation:

She put an insulated pan of water in direct sunlight and measured the time it took for the temperature of the water topincreasse by o. $6^{\circ} \mathrm{C}$.
The apparatus she used is shown in .
The apparatus she used is shown in Figure 14.

Figure 14
Figure 3

Fick QRebork.
smallest crunge ina [1 imaakk]

The time taken for the water temperature to increase by $0.6^{\circ} \mathrm{C}$ was 5 minutes The time taken for the water ternperature to increase by $8.6^{\circ} \mathrm{C}$ was 5 minutes.
The specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kg}^{\circ}{ }^{\circ}{ }_{\mathrm{C}}$. The specific heat capacity of water is $4200 \mathrm{Jkg}^{\circ} \mathrm{C}$.

$$
\text { pacer }=\frac{\text { enersuy tronsfoned }}{\text { time }}
$$

| 8 | 4 |
| :--- | :--- | \square $\frac{3}{3}$ Calculate the mean power supplied by the Sun to the water in the pan. Calculate the mean power supplied by the Sun to the water in the pan.

0	4	4
0	4	4

Calculate the mass of water the student used in her investigation.
Calculate the mass of water the student used in her investigation.
Use the correct equation from the Physics Equation Sheet.
Use the correct equation from the Physics Equation Sheet.
[3 marks]
mass $E \notin \Delta \theta \subset$ [3 marks]
Onorey trangerred $=\mathrm{mc} \Delta \theta^{2}$

$$
m=\frac{/ E}{c \Delta \theta}=\frac{1050 \mathrm{~J}}{4200 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C} \times 0.6^{\circ} \mathrm{C}}=\frac{5}{12}
$$

$$
\underset{\text { Mass }=}{\operatorname{Mass}=0.417 \Omega 3 s f_{\mathrm{kg}} \mathrm{~kg}}
$$

0	4

other points:

+ energy trangerred too surroundings + angle of solar radiation would hove -changed
+ intercity of
Solorradiation
may hour varied

The student restlfscan orly legation: Not all energy tronsgorred to water.
Give one reassonwathy.

Some energy would be trangerred to the pan instead g blewater
6-

\section*{| 0 | 5 |
| :--- | :--- |}

A student investigated the efficiency of a motor using the equipment in
A student investigated the efficiency of a motor using the equipment inffignee415.

Frgauree415

 offither helogyyrtrasfefer.
He repeated the experiment to gain two sets of data.
He repeated the experiment to gain two sets of data.
kept constant
\square
Give one variable that the student controlled in his investigation. Give one variable that the student controlled in his investigation.

wei of

+height

11 Identify anomalies.

22 Calculate a mean.
\rightarrow Reducing the effect g random errors.

Figure 5 shows a graph of the student's results.
Figure 5

| 0 | 5. |
| :--- | :--- | Give Ewe conclusions that could be made from the data in Figure 48.

[[2 2 mar incs]

- As speed increases, efficiency increases. Grain tends tawerds a constant value. (100%.)

Because $-y$-it were asoraiont line, y au would get efficines $>100 \%$ which is not possible.

| 0 | 5 |
| :--- | :--- | .4 Giveethermaimwayythatt the motor is likely to waste energy.

[! Mn marin]
Heating the surroundings.

| 0 | 5 | 5 | When the total power input to the motor was 5 W the motor could not lift the |
| :--- | :--- | :--- | :--- | 2.5 N weight.

State the efficiency of the motor.

$$
\begin{aligned}
& W=F d \quad d=0 W=0 \\
& \text { oubputer }=\frac{W}{t}=0 \\
& \text { Effioncy }(\%)=\frac{\text { output parr }}{\text { Effici }} \times 100 \quad \frac{\text { input paper }}{5} \times 100=0 \quad \%
\end{aligned}
$$

Figure 6 shows a Van de Graaff generator that is used to investigate static electricity.
Before it is switched on, the metal dome has no net charge.
After it is switched on, the metal dome becomes positively charged.

Figure 6

0	6	1	Explain how an uncharged object may become positively charged.

 object.

| 0 | 6 |
| :--- | :--- | :--- | .2 Figure 7 shows a plan view of the positively charged metal dome of a Van de Graaff generator.

Draw the electric field pattern around the metal dome when it is isolated from its surroundings.
Use arrows to show the direction of the electric field.

Figure 7
Electric field
 iissolattee

Question 6 continues on the next page

Another positively charged object is placed in the electric field.
Look at Figure 8.

Figure 8

\mathbf{S}

In which position would the object experience the greatest force? Tick one box.

P

R \square
S \square

Figure 9

| 0 | 7 |
| :--- | :--- | The ammeter displays a reading of 0.10 A.

Calculate the potential difference across the 45Ω resistor.

$$
V=V=I R=\overline{0} \cdot 90 . \frac{10}{4} \times 45=4.5 \mathrm{~V}
$$

| 0 | 7. |
| :--- | :--- |$\quad 2 \quad$ Calculate the resistance of the resistor labelled R .

Resistance $=$
iss
Ω

| 0 | 7 |
| :--- | :--- |$.$| 3 | State what happens to the total resistance of the circuit and the current through the |
| :--- | :--- | circuit when switch S is closed.

A student investigated how current varies with potential difference for two different tamps.
Her results are shown in .
Figure 10
Figure 10

| 0 | 8 | 1 | $C o m p l e t e ~ t h e ~ c i r c u i t ~ d i a g r a m ~ f o r ~ t h e ~ c i r c u i t ~ t h a t ~ t h e ~ s t u d e n t ~ c o u l d ~ h a v e ~ u s e d ~ t o ~ o b t a i n ~$ |
| :--- | :--- | :--- | :--- | the results shown in Figure 10.

(4)
[3 marks]
(A) \leftarrow ammeter
(11) $\leftarrow \vee$ glthmettexr

- surer stays sanane in parathater in but changes

 in series.
- current stays same in series but changes in parallel
$0 \quad 8$ 2 Which lamp will be brighter at any potential difference?

Explain your answer.
Use Figure 10 to aid your explanation
[2 marks]
LEap A_{A} as ais ias has a Fijgdnerewrrent f sos a higher power outport.
higherpower

0	8	3

Explain how Figure 10 shows this.
[2 marks]
Lawipp BBhasha lowerlower eurrentent thatan lamps A for the same potential edfeferencerce, potentiaslmp B has a smaller gradient. and

lamp B has a smaller

| 0 | 8 | 4 |
| :--- | :--- | :--- | potential difference.

Use Figure 10 to determine the range for these lamps.
Explain your answer.

| 0 | 9 |
| :--- | :--- |\quad A student models the random nature of radioactive decay using 100 dice.

He rolls the dice and removes any that land with the number 6 facing upwards.
He rolls the remaining dice again.
The student repeats this process a number of times.
Table 1 shows his results.

Table 1

Roll number	Number of dice remaining
0	100
1	84
2	70
3	59
4	46
5	40
6	32
7	27
8	23

| 0 | 9. | 1 |
| :--- | :--- | :--- | decay.

[2 marks]
1 We cannot proelckitct which dice e will efeaqảy

2 we cannot\# preediditt when each ch one will/ éereay

The student's results are shown in
Figure 11.

Figure 11

0	9	2

Show on Figurleoll you work out your answer.
[2 marks]
$6 \quad$ Half-life $=\quad 3 \cdot 6 \quad$ rolls
decay too decay.

A teacher uses a protactinium (Pa) generator to produce a sample of radioactive material that has a half－life of 70 seconds．
In the first stage in the protactinium generator，uranium（U）decays into thorium（Th） and alpha（ α ）radiation is emitted．
The decay can be represented by the equation shown in Figure 12.

Figure 12

 4

2 d

$$
\begin{aligned}
8 & =922+2 \\
& \equiv 90
\end{aligned}
$$

0	9	3

Atomic number $=$
90

When protactinium decays，a new element is formed and radiation is emitted．
The decay can be represented by the equation shown in Figure 13.

Figure 13
atomic number is
unianuse to rath element
t
iffy an そ相m has an
a\＃dmicic no．of ar 2
（like eltumenty 比）
it must t be

| 0 | 9 | 4^{1} When protactinium decays，a new element，，is formed． |
| :--- | :--- | :--- | :--- |

Figure 13 to determine the name of element X ．

UFanivam

\section*{| 0 | 9 |
| :--- | :--- | :--- | 5}

Give a reason for your answer. atom niucmber
${ }^{\prime}$ thracia decare as

$$
\begin{array}{ll}
\text { atomic } \\
\downarrow \text { number } & \text { [2 marks] }
\end{array}
$$

Beta beta decay as the proton number has decayastheprotrotonnyumbernas.
 μ increased
 mass outran of nucleus remains same out neutron a neutron an es a proton so atdonicic no. incracosesses bey ane.
$09.6 \quad \square$
The teacher wears polythene gloves as a safety precaution when handling radioactive materials.

The polythene glove do not stop the teacher's hands from being irradiated.
sumbmysumese-[2 marks]
Tho present contamination which would cane
cause
time.
\checkmark prexakent contaminatiqgyyich pheuld or time. damageoveralongerperiodof
ifradiaatioun = ternposidyily hits by racliatiotion
 due to radioactive material on

Electricity is generated in a nuclear power station.
Fission is the process by which energy is released in the nuclear reactor.

10 \square Figure 14 shows the first part of the nuclear fission reaction.
Complete Figure 14 to show how the fission process starts a chain reaction.
[3 marks]
Figure 14

Figure 15 shows the inside of a nuclear reactor in a nuclear power station.

Figure 15

| 1 | 0 | 2 |
| :--- | :--- | :--- | In a nuclear reactor a chain reaction occurs, which causes neutrons to be released.

The control rods absorb neutron she thentertitolistregiven mostofthe The control rods can be moved up and down. energy.
Explain how the energy released by the chain reaction is affected by moving the control rods.
[2 marks]

of neutrons absorbed so energy released

 denary.dec
 of neutitross ansorbaded so energy reldassedd inereaseses.

Figure 16 shows how the power output of the nuclear reactor would change if the control rods were removed.

Figure 16
power output
in MW

1	0	3	$C a l c u l a t e ~ t h e ~ r a t e ~ o f ~ i n c r e a s e ~ o f ~ p o w e r ~ o u t p u t ~ a t ~$

[2 marks]

Rate of increase of power output $=\quad 2500 \mathrm{MW} /$ minute

Turn over for the next question

Figure 17 shows a student before and after a bungee jump.
The bungee cord has an unstretched length of 20.0 m .

Figure 17

River

The mass of the student is 50.0 kg .
The gravitational field strength is $9.8 \mathrm{~N} / \mathrm{kg}$.

| 1 | 1 | 1 | Write down the equation which links gravitational field strength, gravitational potential |
| :--- | :--- | :--- | :--- | energy, height and mass.

p $E_{\bar{p}}=1 \pi g$ goth

student jumps to the point 20.0 m below.

Change in gravitational potential energy $=\quad 98000$

80% of this change in gravitational potential energy has been transferred to the student's kinetic energy store.
How much has the student's kinetic energy store increased after falling 20.0 m ?

$980005 \times 0.887847840$

[1 mark]
Kinetic energy gained $=$
788040 J

| 1 | 1 | 4 |
| :--- | :--- | :--- | Calculate the speed of the student after falling 20.0 m .

Give your answer to two significant figures.
[4 marks]

| 1 | 1 | 5 |
| :--- | :--- | :--- | At the lowest point in the jump, the energy stored by the stretched bungee cord is 24.5 kJ .

The bungee cord behaves like a spring.
Calculate the spring constant of the bungee cord.
Use the correct equation from the Physics Equation Sheet.

Spring constant $=\quad 400 \quad \mathrm{~N} / \mathrm{m}$

| 1 | 2 |
| :--- | :--- |\quad A student wants to calculate the density of the two objects shown in Figure 18.

Figure 18

dreńsitt tefl maine

Metal cube Small statue

Describe the methods that the student should use to calculate the densities of the two objects.
[6 marks]

Metalculcuatic:

 cube the length to find the volume. fund thtofindthevolume.
Sfralal||staty
imf mersesestatute titi water. water.

- Measure the volume of the displaced water.
displaces $\#$ Wexter.volume of the statue.
This is the volume of the statue.
For both both:
- Use a balance to find the mass.
 densisjty

| 1 | 3 |
| :--- | :--- |\quad An electrician is replacing an old electric shower with a new one.

The inside of the old shower is shown in .Figure 19

Figure 19

1	3	1	If the electrician touches the live wire he will receive an electric shock.

Explain why.
[4 marks]
The potential of the live wire is $23 B O \mathrm{~V}$.
 plditentiaisof the elecaciciciapoton trial edfiferenergice between teatersiseliroteriftialand the electrician anat so
 pasmens through his body.

Different electrical wires need to have a cross-sectional area that is suitable for the power output.
Figure 20 shows the recommended maximum power input to wires of different cross-sectional areas.

Figure 20

A. " 8 m n n
13.2 The new electric shower has a power input of 13.8 kW .

Determine the minimum diameter of wire that should be used for the new shfoweft $r^{2}=\pi\left(\frac{d}{2}\right)^{2}$
The diameter, d , can be calculated using the equation: A--

4AA $\quad \mathrm{A}$ is the cross-sectional area of the wire.

$\mathrm{d}=\tilde{\mathrm{n}} \mathrm{C} \div \pi$
$D=5 ¥ d=\sqrt{F=1}=3.53$
[2 marks]
$=3$.

Minimum diameter $=$ S3

\section*{| 1 | 3 |
| :--- | :--- | 3}

The charge that flows through the new shower in 300 seconds is 18000 C . The new electric shower has a power of 13.8 kW .
Calculate the resistance of the heating element in the new shower.
Write down any equations you use.

$I_{I=Y}=\frac{=18000080 \mathbb{F}=60 n^{5 \text { marks }]}}{300}$
 \checkmark

3.83

$$
\text { Resistance }=3 \cdot 83 \Omega
$$

END OF QUESTIONS

Copyright information

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2016 AQA and its licensors. All rights reserved.
Figure 6: Photograph © Michael Priest
Figure 18: Photograph © Thinkstock
Figure 19: Photograph © Michael Priest

