
Questions are for both separate science and combined science students unless indicated in the question

	A student investigated beauther topperature of a lumpy of ice veried as the ice was bested
1	A student investigated how the temperature of a lump of ice varied as the ice was heated.

The student recorded the temperature until the ice melted and then the water produced boiled.

The figure below shows the student's results.

The power output of the heater was constant.

/_`	The specific heat capacity		Lla a a .a a a :£: a la a a 4 a a .	:
ıa	I DE SDECITIC DEST CADACITY	v ot ice is less than i	rne snecitic neat ca	nacity of water
(u	The opecine near capacit	y or loc is toss triair i	ine specime meat ca	pacity of water.

Explain	how	the	figure	above	shows	this.
						_
						_
						_
						_

(2)

(b) The specific latent heat of fusion of ice is less than the specific latent heat of vaporisation of water. Explain how the figure above shows this.

produc	ced boile	a. m u	ie seco	na staa		nvestigai	tion mor	e therr	nal energ	У
was tra	ansferred	to the	<u>,</u>							
surrou	ndings.									
Descril	be two v	vays th	ne resul	ts of th	e expe	eriment i	n the fig	ure ab	ove woul	d
have b	een									
differe										
1										
					·					
2										
When th										
	ne water w	as boili	ng, 0.030	O kg of wa	ater tur	ned into st	eam.		pecific	
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	as boili	ng, 0.030	O kg of wa	ater tur er was	ned into st	eam.		pecific unit.	
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.030	Okg of wa	ater tur er was	ned into st	eam. Calculate	e the s		
The er	ne water w	vas boili Insferro	ng, 0.03(ed to the vapori	D kg of wa	er was	ned into st	eam. Calculate Give	the s	unit.	
	ne water w	vas boili Insferro	ng, 0.03(ed to the vapori	D kg of wa	er was	ned into st	risation =	the s	unit.	

2.

A student investigated the density of different fruits.

The table below shows the results.

Fruit	Density in g/cm3
Apple	0.68
Kiwi	1.03
Lemon	0.95
Lime	1.05

	LITTIE	1.00		
(a)	measuring cylir	rmined the volume of each fruit nder. ce of equipment would the	-	
	fruit?			The thre definity of eder
				(1)
(b)	Write down the ec	quation which links density ($ ho$),	mass (<i>m</i>) and volume (<i>V</i>).	
				(1)
(c)	The mass of the a	pple was 85 g.		
	The density of	the apple was 0.68 g/cm	3. Calculate the volume	of the
	apple. Give you	r answer in cm3.		

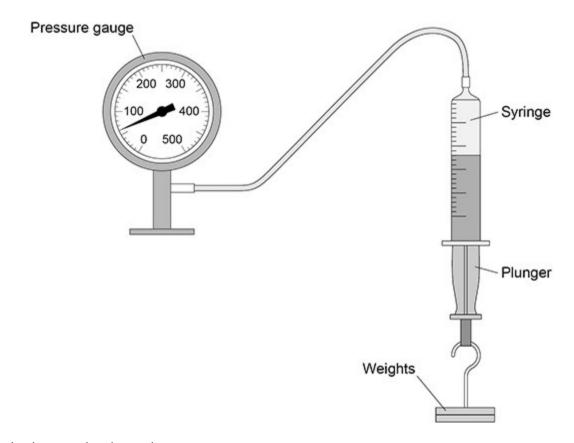
Volume = _____ cm3

(3)

(d) The student only measured the volume of each fruit once.

The volume measurements **cannot** be used to show that the method to measure volume gives precise readings.

Give the reason why.



(1) (Total 6 marks)

3.

A teacher demonstrated the relationship between the pressure in a gas and the volume of the gas.

The figure below shows the equipment used.

This is the method used.

- 1. Record the initial volume of gas in the syringe and the pressure reading before any weights are attached.
- 2 Attach a 2.0 N weight to the syringe.
- . Record the volume of the gas and the reading on the pressure gauge.
- 3 Repeat steps 2 and 3 until a weight of 12.0 N is attached to the syringe.

Particle Model	of M	atter (H)			
((a)	What was the rang	ge of force used?	(separate only)	
		From	N to	_ N	(1)
((b)	Give one contro	l variable in the	investigat <mark>isc</mark> parate only)	
(When the volume 60 kPa.	of gas in the syring	ge was 45 cm3, the pressure gauge sho	wed a value of
		Calculate the pr	essure in the ga	as when the volume of gas in the s	syringe was 40 cm3.
		(separate only)			_
					_ _
					_
					_
					<u> </u>

Pressure = _____ kPa

(4)

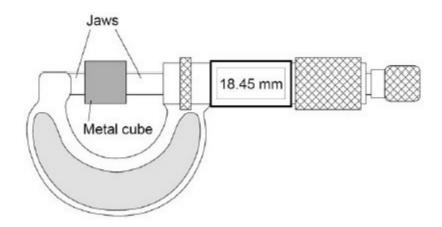
(d)	When the volume of gas in the syringe increased, the pressure on the inside walls of the

syringe decreased.
(separate only)
Explain why.

(3) (Total 9 marks)

The photograph below shows a balloon filled with helium gas.

New pressure = _____ Pa


(c)	The temperature of the helium in the balloon was increased.	
	The mass and volume of helium in the balloon remained constant.	
	Explain why the pressure exerted by the helium inside the balloon would	
	increase.	
		4)
	(Total 10 mar)	•

Particle Model of Matter (H)

A student measured the width of a solid metal cube using a digital micrometer.

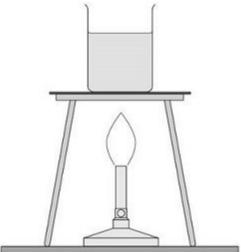
The figure below shows the micrometer.

(a) The resolution of the micrometer is 0.01	mm
--	----

The student cou	ıld have used	a metre rule to	measure the	width of the cu	he
THE STUDENT COL		a ilictic i alc to	Theasare the		\sim

Explain how using a metre rule would have affected the accuracy of measurement of width.	of the student's

(2)


(b) The mass of the metal cube was measured using a top pan balance.

The balance had a zero error. Explain how the zero error may be corrected after readings had been taken from the balance.

(2)

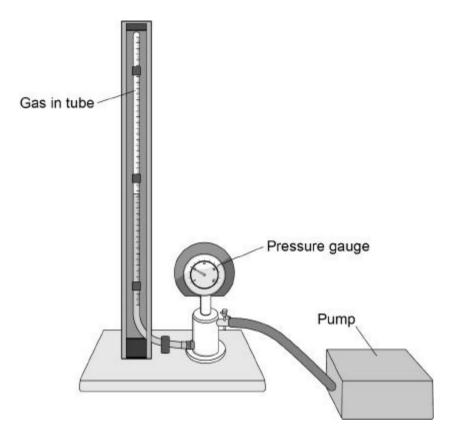
Particle Model of Matter (H)

The width of the					
Calculate	the	mass	of	the	cube.
					
		Mass =			kg
		171055 <u></u>			(5)
					(Total 9 marks)
e figure below shentually the wate			ting some \	water in a be	aker.
)	(

(a)	Explain how the internal energy of the water changes as it is heated from 20 °C to	o 25 °C
		

(2)

(b)	How is the particle model used to explain the difference in density between a	liquid and a	
	gas? Tick (
	Particles in a gas have less kinetic energy than particles in a lquid		
	Particles in a gas have more potential energy than particles in a liquid.		
	Particles in a liquid are further apart than particles in a gas.		
	Particles in a liquid are larger than particles in a gas.		
			(1)
(c)	A student measured the mass of boiling water that was turned into steam in fi Explain how the student could use this information to estimate output of the Bunsen burner in watts.		
		(Total 7 r	(4) narks)


Page 11 of 16

7.

A student investigated how the pressure exerted by a gas varied with the volume of the gas.

Figure 1 shows the equipment the student used.

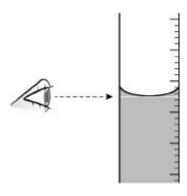
A pump was used to compress the gas in a tube. As the volume of the gas decreases, the pressure of the gas increases.

		-							
Give	two	reasons	whv	takina	repeat	readings	could	provide	m

The student only recorded one set of results.

Give **two** reasons why taking repeat readings could provide more accurate data.

(separate only)


(a)

1.	 	 		
	 		 	2.
			 	

(2)

(h) Figure 2 shows the position of the student's eye when taking volume measurements.

Figure 2

_	s is compressed	· · · · · ·		_			
Explain	how the tem	perature in	crease wo	uld affect t	the pressur	re exerted b	y the ga separate
							
						 	

(d) One of the student's results is given below.

pressure = 1.6 × 105 Pa volume = 9.0 cm³

Calculate the volume of the gas when the pressure was $1.8 \times 105 \text{ Pa}$.

The temperature of the gas was constant.(separate only)

Volume = _____ cm3

(3)

(e) Figure 3 shows a person using a bicycle pump to inflate a tyre.

Figure 3

Mass of air per second = _____ kg

(3)

Particle Mode	el of M	latter (H)									
	(b)	The power output of the turbine is directly proportional to the kinetic energy of the air									
		passing the blades each second. Describe the effect on the power output									
		when	the	wind	speed	is	halved.				
								(3)			
	(c)	At a different v	vind speed, th	ne wind turbine ha	s a power out	tout of 388 kW		(5)			
	(0)		-	ng the wind tu	-		800 kg.				
		Calculate th	e speed of	the air passing	the blades	s each second	. Assume				
		that	the	process	is	100%	efficient.				

Speed of air = _____ m/s

(3)

(Total 9 marks)