Mark schemes

1.

(a)	the gradient for ice is steeper than the gradient for water (liquid) allow the temperature of the ice increased faster than the temperature of the water	1
	which means that less energy is needed to increase the temperature by a fixed amount	1
(b)	water took more time to vaporise than the ice took to melt	1
	which means that less energy is needed to change the state from solid to liquid (than from liquid to vapour)	1
(c)	any two from:	
	 ice/water would take more time to increase in temperature allow gradients would be less steep ice/water would take more time to change state the change in temperature with time would not be linear 	
	allow horizontal lines would be longer	2
(d)	E = 69 000 (J)	1
	69 000 = 0.030 × L allow a correct substitution of an incorrectly/not converted value of E	1
	$=\frac{69\ 000}{1}$	
	0.030 allow a correct rearrangement using an incorrectly/not converted value of E	1
	L = 2 300 000 or L = 2.3 × 106	
	allow a correct calculation using an incorrectly/not converted value of E	1
	J/kg allow a unit consistent with their numerical answer eg 2300 kJ/kg	
		1

[11]

2. (a) balance / scales
(b) density =
$$\frac{mass}{volume}$$

or
 $\rho = \frac{m}{V}$
(c) $0.68 = \frac{85}{V}$
 $V = \frac{85}{0.68}$
 $V = 125 (cm3)$
(d) repeat readings (of volume) need taking (of each fruit) to show that the readings are
close together
allow the same 'for 'close together'
1
(d) $0.00 to 12(.0)$
 $0 = 0 + 200 (V)$
(e) mass of gas (in the syringe)
or
temperature (of the gas)
(c) constant = 60×45
 $0 = \frac{2700}{40}$
 $p = \frac{2700}{40}$
 $p = 67.5 (kPa)$
 $0 = 0 + 200 (kPa)$

	(d)	there is more time between collisions of particles and the walls of the syringe		
		there are less frequent collisions between the particles and the walls of the syringe	1	
		(causing) a lower (average) force on the walls of the syringe	1	
		(and) pressure is the total force per unit area	1	[9]
4.	(a)	The particles move in random directions.	1	
		The particles move with a range of speeds.	1	
	(b)	$100\ 000 \times 0.030 = 3000$	1	
		p × 0.025 = 3000 allow a correct substitution using an incorrectly calculated value using pV = constant	1	
		$p = \frac{3000}{0.025}$ allow a correct rearrangement using an incorrect value of the constant	1	
		p = 120 000 (Pa) allow a correct calculation using an incorrect value of the constant allow correct substitution into p1V1 = p2V2 for first 2 marking points	1	
	(c)	particles would have a higher (mean) kinetic energy allow particles would have a higher (mean) speed do not accept particles vibrate more	1	
		(so) increased number of collisions with the walls of the balloon per second allow greater frequency of collisions with the walls of the balloon	1	
		greater forces exerted in collisions (between particles and balloon walls) allow greater rate of change of momentum (of particles)	1	
		greater force exerted on same area allow description using p=F/A	1	[10]

		and the second lower resolution		
5.	(a)	allow metre rule has a resolution of 1 mm / 1 cm		
		fewer decimal places is insufficient		
			1	
		so is less accurate (than the micrometer screw gauge)		
			1	
	(b)	record the value of the zero error when there is no object on the balance		
		subtract / add the value of the zero error		
			1	
		subtract / add the value of the zero error	1	
			I	
	(c)			
		an answer of 0.0502 (kg) scores 5 marks		
		V = (18.45 × 10−3)3		
		or V = 0.018453		
		this mark may be awarded if width is incorrectly / not		
		converted	1	
			1	
		$V = 6.28 \times 10-6 \text{ (m3)}$		
		this answer only	1	
		$8.0 \times 10^3 = \frac{111}{6.28 \times 10^{-6}}$		
		allow		
		$8.0 \times 10^3 = \frac{m}{100000000000000000000000000000000000$		
		their calculated V	1	
		m = 8.0 × 103 × 6.28 × 10−6		
		allow m = 8.0 × 103 × their calculated V		
			1	
		m = 0.0502 (kg)		
		allow an answer consistent with their calculated V	-	
			1	[9]
				[-]

6.	(a)	the (mean) kinetic energy of the particles increases allow the (mean) speed of the particles increases 'kinetic energy increases' is insufficient by itself do not accept particles vibrating	1	
		which increases the (internal) energy of the water ignore description of evaporation	1	
	(b)	Particles in a gas have more potential energy than particles in a liquid.	1	
	(c)	Energy given to water E = mL with quantities defined power output (of Bunsen burner) = $\frac{\text{energy transferred (to water)}}{\text{time}}$	1	
		allow $P = \frac{E}{t}$ with quantities defined power output $= \frac{\text{change in mass \times specific latent heat}}{\text{time}}$ allow $E = Pt$ equated with $E = mL$ or stated in words or $P = \frac{mL}{t}$ with quantities defined	1	
		time should be converted to seconds or use a time of 300 seconds	1	[7]
7.	(a)	 any two from: calculate a mean reduces the effect of random errors reduces human error is insufficient identify / remove anomalies allow to assess the repeatability of the data 	2	
	(b)	random error allow a parallax error human error is insufficient	1	
		(because) eye position would not be the same each time (relative to the liquid) allow systematic error only if it is clear that the student always viewed liquid level from above meniscus (or below)	1	

	(c)	(a temperature increase would) increase the pressure in the tube (even if the volume was constant)	1
		(because a higher temperature would mean) higher (average) kinetic energy of molecules / particles	
		allow higher (average) speed for higher (average) kinetic energy	1
	(d)	1.6 × 105 × 9.0 (= 1.44 × 106)	1
		$1.44 \times 106 = 1.8 \times 105 \times V$	
		$V = \frac{1.6 \times 10^5 \times 9.0}{1.8 \times 10^5}$	
		1.0 4 10	1
		or $V = \frac{1.44 \times 10^6}{1.8 \times 10^5}$ V = 8.0 (cm3)	
		an answer of 8.0 (cm3) scores 3 marks	1
	(e)	work is done on the air (in the tyre)	1
		so the temperature (of the air) increases allow the (average) kinetic energy of the particles increases	1
			[11]
8.	(a)	$1.2 = \frac{11}{2.3 \times 10^4}$	1
		m = 1.2 × 2.3 × 104	1
		m = 27 600 (kg) allow an answer of 28 000 (kg) or 2.8 × 104 (kg)	
		or	
		m = 2.76 × 104 (kg)	1
		an answer of 27 600 (kg) scores 3 marks	÷

(b)	mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two	1	
		1	
	(wind speed is halved) decreasing kinetic energy by a factor of four	1	
	so kinetic energy decreases by a factor of eight	1	
	allow power output for kinetic energy throughout	1	
(c)	388 000 = 0.5 × 13 800 × v2		
	this mark may be awarded if P is incorrectly / not converted	1	
	$v^2 = \frac{(2 \times 388000)}{13800}$		
	this mark may be awarded if P is incorrectly / not converted		
	or		
	$V^2 = \frac{388000}{(0.5 \times 13800)}$		
	or		
	v2 = 56.2	1	
	y = 7.50 (m/s)	1	
	an answer that rounds to 7.50 (m/s) only		
		1	
			[9]