Mark schemes
1.
(a)

2 marks for all correct
1 mark for 1 or 2 correct
(b) \mathbf{B}
(c) D
(d) the kinetic energy of the particles
(e) $E=0.250 \times 334000$

$$
\mathrm{E}=83500 \text { (J) }
$$

(f) sublimates
2. (a) Level 2: The method would lead to the production of a valid outcome. Key steps are identified and logically sequenced.

Level 1: The method would not necessarily lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- part fill a measuring cylinder with water
- measure initial volume
- place object in water
- measure final volume
- volume of object = final volume - initial volume
- fill a displacement / eureka can with water
- water level with spout
- place object in water
- collect displaced water
- measuring cylinder used to determine volume of displaced water
(b) density $=\frac{48.6}{18.0}$

$$
\text { density = } 2.70 \text { (g/cm3) }
$$

an answer of $2.70(\mathrm{~g} / \mathrm{cm} 3)$ scores 2 marks
(c) limestone
(d) eye position when using measuring cylinder
water level in can (at start) not at level of spout
or
not all water displaced by stone is collected in container
(e) volume would be lower / higher
3. (a) minimum distance between wind turbines is at least 500 m in all turbines can rotate to face into wind and still maintain the minimum distance
(b) density = mass/volume

$$
\text { allow } \rho=m / V
$$

(c) $1.2=\frac{51000}{\mathrm{~V}}$
$V=42500$
$V=43000$
m3
an answer of 43000 scores 4 marks
an answer of 42500 scores $\mathbf{3}$ marks
(d) $2.4 \times 109 / 1.6 \times 106$

1500 an answer of 1500 scores 2 marks
(e) wind power is unreliable
(very) large numbers of wind turbines would need to be constructed allow calculation of this (15 625)
4. (a) Level 2: The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.

Level 1: The method would not necessarily lead to a valid outcome. Some steps are identified, but the method is not fully logically sequenced.

No relevant content

Particle Model of Matter (F)

Indicative content

- use a eureka/displacement can
- fill the eureka/displacement can with water
fill the eureka/displacement can up to the spout
- place lime in eureka/displacement can
- collect water that overflows
- use a measuring cylinder to measure volume of water

OR

- use a measuring cylinder
- part fill the measuring cylinder with water
- measure the initial volume of water
- place lime in measuring cylinder
- record new volume of water
- volume of lime = new volume - initial volume
(b) mean $=\frac{(2.1+2.1+2.4)}{3}$

$$
\text { mean = } 2.2(\mathrm{~cm} 3)
$$

(d) density $=\frac{84}{120}$

$$
\text { density = } 0.70 \text { (g/cm3) }
$$

5. (a) range of speeds moving in different directions accept random motion
(b) internal energy
(c) density = mass / volume
(d) $0.00254 / 0.0141$
0.18
6. (a) Student A's measurements had a higher resolution

Student B was more likely to misread the temperature
(b) a random error
(c) $8.4^{\circ} \mathrm{C}$
(d) 740 (seconds) allow answers in the range 730-780
(e) 0.40×199000

79600 (J)
accept 79600 (J) with no working shown for $\mathbf{2}$ marks
(f) stearic acid has a higher temperature than the surroundings accept stearic acid is hotter than the surroundings
temperature will decrease until stearic acid is the same as the room temperature / surroundings

1

1

1

1

1

1
7. (a) 0 to 25 cm 3
(b) temperature
(c) $101000 \times 12=$ constant
(d) $p \times 24=1212000$

$$
\begin{aligned}
& p=\frac{1212000}{24} \\
& p=50500(\mathrm{~Pa})
\end{aligned}
$$

(e) there is more space between the gas particles

Level 1: The method would not necessarily lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content:

record the initial volume of air record the initial pressure

- push the plunger of the syringe
- to decrease the volume of air read the new value on the pressure gauge
- record the new value of the volume repeat for different volumes
-

(b) (when the volume is halved) the pressure doubles

- allow for 1 mark when the volume is halved the pressure increases
(c) kinetic energy
speed

9. (a) greater than less than
in this order only
(b) boiling
(c)
a correct answer that rounds to 140000 (J) scores 2 marks

$$
E=0.063 \times 2260000
$$

$$
\mathrm{E}=140000(\mathrm{~J})
$$

$$
\text { allow } 142380 \text { (J) }
$$

(d)
density $=\frac{0.063}{0.105}$
density $=0.6$
kg / m3
10. (a) chemical
kinetic
1
in this order only
(b) $E k=0.5 \times 80 \times 122$

$$
\text { Ek = } 5760(\mathrm{~J})
$$

(c) $\mathrm{E}=0.040 \times 480 \times 50$

$$
E=960(J)
$$

(d) increased
11. (a) 0 to 25 cm 3
(b) control

1

1
(c) 2 sets of data recorded from line of best fit to show that the product is the same in both cases (1600)
allow for 1 mark one set of calculated data for one point on the line of best fit
(d) decreases
increases
increases
12. (a) the heating element of the kettle takes time to heat up allow the kettle takes time to heat up
(b) $\Delta \Theta=78\left({ }^{\circ} \mathrm{C}\right)$
$155000=m \times 4200 \times 78$
allow a correct substitution using an incorrect value of $\Delta \theta$
$m=\frac{155000}{4200 \times 78}$
allow a correct rearrangement using an incorrect value of $\Delta \theta$
$\mathrm{m}=0.4731(\mathrm{~kg})$
allow a correct calculation of mass using an incorrect value of $\Delta \theta$
$\mathrm{m}=0.47(\mathrm{~kg})$
(c) Gradient $=\frac{\Delta \theta}{t}$ allow gradient = rate of temperature increase allow calculation of gradient

$$
\mathrm{Pt}=\mathrm{mc} \Delta \theta
$$

$P=$ gradient $\times \mathrm{mc}$

