Mark schemes

1.	(a)			
		Solid		
		Gas		
		2 marks for all correct		
		1 mark for 1 or 2 correct		
			2	
	(b)	В	1	
	(c)	D	1	
	(d)	the kinetic energy of the particles	1	
	(e)	E = 0.250 × 334 000	1	
		E = 83 500 (J)	1	
	(f)	sublimates	1	[8]
2.	(a)	Level 2: The method would lead to the production of a valid outcome. Key steps are identified and logically sequenced.		[0]
			3–4	
		Level 1: The method would not necessarily lead to a valid outcome. Some relevant steps are identified, but links are not made clear.		
			1-2	
		No relevant content		
			0	

Indicative content

- part fill a measuring cylinder with water
- measure initial volume
- place object in water
- measure final volume
- volume of object = final volume initial volume
- fill a displacement / eureka can with water
- water level with spout
- place object in water
- collect displaced water
- · measuring cylinder used to determine volume of displaced water

(b) density = $\frac{48.6}{18.0}$

1 density = 2.70 (g/cm3)1 an answer of 2.70 (g/cm3) scores 2 marks (c) limestone 1 (d) eye position when using measuring cylinder ór water level in can (at start) not at level of spout or not all water displaced by stone is collected in container 1 (e) volume would be lower / higher 1 minimum distance between wind turbines is at least 500 m in all (a)

directions

3.

turbines can rotate to face into wind and still maintain the minimum distance

(b) density = mass/volume

1

1

[9]

4.

(c)	$1.2 = \frac{51000}{V}$	1	
	$V = \frac{51000}{1.2}$	1	
	V = 42 500	1	
	V = 43 000	1	
	m3 an answer of 43 000 scores 4 marks an answer of 42 500 scores 3 marks		
(d)	2.4 × 109 / 1.6 × 106	1	
	1500 an answer of 1500 scores 2 marks	1	
(e)	wind power is unreliable	1	
	(very) large numbers of wind turbines would need to be constructed allow calculation of this (15 625)	1	[11]
(a)	Level 2 : The method would lead to the production of a valid outcome. The key steps are identified and logically sequenced.		
	Level 1: The method would not necessarily lead to a valid outcome. Some steps are identified, but the method is not fully logically sequenced.	3-4	
	, ,	1-2	
	No relevant content	0	

Indicative content

- use a eureka/displacement can
- fill the eureka/displacement can with water fill the eureka/displacement can up to the spout
- place lime in eureka/displacement can
- collect water that overflows
- use a measuring cylinder to measure volume of water

OR

- use a measuring cylinder
- part fill the measuring cylinder with water
- measure the initial volume of water
- place lime in measuring cylinder

record new volume of water

• volume of lime = new volume – initial volume

(b) mean =
$$\frac{(2.1+2.1+2.4)}{3}$$

1

1

1

1

1

1

1

1

1

[10]

- mean = 2.2 (cm3)
- (c) allows anomalous results to be identified and ignored

reduces the effect of random errors when using the equipment

(d) density = $\frac{84}{120}$ 1

density = 0.70 (g/cm3)

5.

(a) range of speeds

moving in different directions accept random motion

(b) internal energy

- (c) density = mass / volume
- (d) 0.00254 / 0.0141
 - 0.18

1

accept 0.18 with no working shown for the **2** calculation marks

		kg / m3	1	[7]
6.	(a)	Student A's measurements had a higher resolution	1	[7]
		Student B was more likely to misread the temperature	1	
	(b)	a random error	1	
	(c)	8.4 °C	1	
	(d)	740 (seconds) allow answers in the range 730 – 780	1	
	(e)	0.40 × 199 000	1	
		79 600 (J)	1	
		accept 79 600 (J) with no working shown for 2 marks	1	
	(f)	stearic acid has a higher temperature than the surroundings accept stearic acid is hotter than the surroundings	1	
		temperature will decrease until stearic acid is the same as the room temperature / surroundings	1	
				[9]
7.	(a)	0 to 25 cm3	1	
	(b)	temperature	1	
	(c)	101 000 × 12 = constant	1	
		constant = 1 212 000 (Pa cm3)	1	

8.

9.

(d)	p × 24 = 1 212 000 allow ecf from question (c)	1	
	$p = \frac{1212\ 000}{24}$	1	
	p = 50 500 (Pa)	1	
(e)	there is more space between the gas particles	1	[8]
(a)	Level 2: The method would lead to the production of a valid outcome. Key steps are identified and logically sequenced.		
	Level 1: The method would not necessarily lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	3-4	
	No relevant content	1-2 0	
	Indicative content:	Ŭ	
	 record the initial volume of air record the initial pressure push the plunger of the syringe to decrease the volume of air read the new value on the pressure gauge record the new value of the volume repeat for different volumes 		
(b)	 (when the volume is halved) the pressure doubles allow for 1 mark when the volume is halved the pressure increases 	2	
(c)	kinetic energy	1	
	speed	1	[8]
(a)	greater than	1	
	less than	1	
	in this order only		

	(b)	boiling	
		ignore evaporation 1	
		temperature is constant	
		allow temperature remains the same	
	(c)		
		a correct answer that rounds to 140 000 (J) scores 2 marks	
		E = 0.063 × 2 260 000	
		E = 140000(J)	
		allow 142 380 (J)	
	(d)	1	
	(u)	an answer of 0.6 scores 2 marks	
		density = 0.063	
		0.105 1	
		density = 0.6	
		1	
		Kg / III.5 1	
			[9]
10.	(a)	chemical 1	
		kinetic	
		in this order only	
	(h)	_{Ek} = 0.5 × 80 × 122	
	(0)	1	
		Ek = 5760 (J)	
		an answer of 5760 (J) scores 2 marks	
	(c)	$E = 0.040 \times 480 \times 50$	
		E = 960 (J)	
		an answer of 960 (7) scores 2 marks	

	(d)	increased	1	[7]
11.	(a)	0 to 25 cm3	1	
	(b)	control	1	
	(c)	2 sets of data recorded from line of best fit to show that the product is the same in both cases (1600) allow for 1 mark one set of calculated data for one point on the line of best fit	2	
	(d)	decreases	1	
		increases	1	
		increases	1	[7]
12.	(a)	the heating element of the kettle takes time to heat up allow the kettle takes time to heat up	1	
	(b)	ΔΘ = 78 (°C)	1	
		155 000 = m × 4200 × 78		
		allow a correct substitution using an incorrect value of $\Delta \Theta$	1	
		$m = \frac{155\ 000}{4200\ \times 78}$		
		allow a correct rearrangement using an incorrect value of $\Delta \Theta$	1	
		m = 0.4731 (kg) allow a correct calculation of mass using an incorrect value of $\Delta \Theta$	1	
		m = 0.47 (kg)	1	

(c)	Gradient =	$\frac{\Delta \theta}{t}$ allow gradient = rate of temperature increase allow calculation of gradient	1	
	Pt = mc∆⊖		1	
	P = gradier	nt × mc	1	
			Ĩ	[9]