1.

Mark schemes

(a)	friction	1
(b)	(area of rectangle =) 108 (m)	1
	(area of triangle =) 54 (m)	1
	(total area / distance =) 162 (m) allow a correctly calculated total area / distance from an incorrectly calculated area of rectangle and / or triangle	1
(c)	(the force on the pedal) causes a moment about the pedal axle	1
	which causes a force on the chain (which causes a moment about the rear axle) <i>allow gear B for chain</i>	1
(d)	2.42 (- 02) = 2 × a × 18	1
	$a = \frac{2.4 \times 2.4}{36}$	1
	a = 0.16 (m/s2)	1
	alternative method	
	t = 18 / 1.2 t = 15 (s) (1) a = 2.4 / 15 (1)	
	this mark may be awarded if the time is incorrectly calculated	
	a = 0.16 (m/s2) (1)	
	allow a correctly calculated acceleration from an incorrectly calculated time 1	

5 (n)			
	(e)	horizontal (200N) and vertical (75N) forces drawn to the same scale	1
		resultant force drawn in the correct direction	
		shown by an arrow head from bottom right to top left	1
		resultant force with a value in the range 212 to 218 (N) allow a calculated value of 213 6 or 214 (N)	
			1
		direction in the range 20–22 (degrees from the horizontal)	
		214 N 75 N A 200 N	
		allow 68–70 (degrees from the vertical) allow a bearing in the range 290–292 to gain full marks a vector diagram must have been drawn	1
			[13]
2.	(a)	(total) momentum before = (total) momentum after allow (total) momentum stays the same	1
	(b)	momentum of player A = 585 (kg m/s)	1
		momentum of player B = –500.5 (kg m/s)	1
		<u>(-500.5 + 585)</u> (78 + 91)	
		OR	
		84.5 169	
		allow 1085.5 169	1
		= 0.5 (m/s)	
		this answer only	1

	(c)	(protective pads) increase the time taken to stop (during the collision) allow increases impact / contact / collision time do not allow slows down time	1	
		so the rate of change of momentum decreases allow reduces acceleration/deceleration allow increases the time to reduce the momentum to zero for 2 marks	1	
		reducing the force (on the ice hockey player) allow impact for force do not allow if linked to an incorrect explanation	1	
3.	(a)	the tendency of an object to continue in its state of rest or motion allow how difficult it is to change the velocity of an object	1	[8]
	(b)	(soft foam) increases the time taken to stop allow increases impact/contact time or increases the time taken to decrease momentum	I	
		allow increases the time of the collision do not accept slows down time	1	
		decreases the rate of change in momentum allow reduces acceleration/deceleration reduces momentum is insufficient allow increases the time to reduce the momentum to zero for 2 marks		
		reducing the force (on the egg)	1	
		allow impact for force	1	

(c)

an answer 4.5 (m/s) scores **4** marks an answer 4500 scores **3** marks

4.

(a) longer arrow pointing vertically downwards one arrow only

labelled weight

allow (force of) gravity

[8]

1

1

(b)	initially air resistance is less than weight / gravity so the skydiver accelerates allow drag for air resistance	
	allow increased velocity / speed for accelerates	1
	acceleration causes the air resistance to increase	
	acceleration or increased velocity / speed is not required here if given in the first mark point	1
	resultant force decreases to zero	
	allow air resistance becomes equal to weight / gravity	1
	so the skydiver falls at terminal velocity	
	allow constant velocity/speed for terminal velocity ignore any mention of subsequent motion and use of parachute	1
(c)		
(-)	an answer of 50 (m/s) scores 3 marks	
	distance at 7s = 200 (m) distance at 12s = 450 (m)	
	both distances required	1
	speed = $\frac{450 - 200}{12 - 7}$ or $\frac{250}{5}$	
	allow correct use of their two distances divided by 5	1
	50 (m/s) allow an answer consistent with their two distances	1

	(d)	The higher the altitude the less dense the air	1
		so the air resistance on the skydiver (falling from 39000 m) was less (at the same speed)	1
		so the skydiver was able to accelerate for longer before reaching (a higher) terminal velocity	
		allow constant velocity/speed for terminal velocity	1
		or	
		so the skydiver was able to accelerate for longer before air resistance = weight / gravity	[12]
5.	(a)	air molecules colliding with a surface create pressure	1
		at increasing altitude distance between molecules increases	
		or	
		at increasing altitude fewer molecules (above a surface)	1
		so number of collisions with a surface decreases or	
		or so always less weight of air than below (the surface)	1
	(b)	atmospheric pressure = 20 kPa from graph and conversion of 810 cm2 to 0.081 m2 allow ecf for an incorrect value clearly obtained from the graph	1
		$5 \times 104 = F_{-}$	
		0.081	1
		$F = 5 \times 104 \times 0.081$	1
		4050	1
		4100 (N)	1

allow 4100 (N) with no working shown for **5** marks allow 4050 with no working shown for **4** marks

(c) force from air pressure acting from inside to outside bigger than force acting inwards

so keeps the window in position

6.

(a) the (perpendicular) distance from the pivot / hinge to (the line of action of) the force is greater

allow distance from the rope to the pivot / hinge is greater (than distance between handle and pivot / hinge)

so a smaller force is required

this mark is dependent on scoring the 1st mark an answer a smaller force is required at the rope to produce the same moment scores **2** marks

1

1

1

1

[10]

	(b)				
			an answer of 770 scores 6 marks		
		924 = F × 0	.15	1	
		F = 6160 (N	N) allow use of E = ½ F e instead of k = F ÷ e and E = ½ × k × e2	1	
		6160 = k ×	0.25 allow their calculated F = k × 0.25	1	
		$k = \frac{6160}{0.25}$ or k = 24640 (N/m) allow a value for k calculated using their calculated F	1	
		E = ^½ x 61	$\frac{60 \times 0.25 \times 0.25}{0.25}$ allow E = ½ × their calc. k × 0.252	1	
		E = 770 (J)	allow an answer consistent with their calculated k	1	[8]
7.	(a)	all heights di	rawn the same as tube 1 <i>judge by eye</i>	1	
	(b)	increasing do the swimm	epth increases the height / mass / volume (of the water column) above ner allow more water above (the swimmer) more water is insufficient	1	
		increasing	the weight / force (of water) acting on the swimmer	1	

	(c)	increase in depth = 1.2 (m)	1	
		$(\Lambda) p = 1.2 \times 1030 \times 9.8$		
		allow either 0.50 or 1.70 for 1.2	1	
		(Δ) p = 12112.8		
		allow a correctly rounded answer		
		allow a correct calculation using either 0.50 or 1.70	1	
		pascals or Pa		
		do not accept pa allow N/m2		
		an answer of 12 112.8 scores 3 marks	1	
			[7	′]
8.	(a)	arrow of equal size pointing vertically upwards		
		judged by eye ignore porizontal arrows if equal and opposite		
		horizontal arrows of unequal length negates this mark	1	
		labelled 'upthrust'	-	
		ignore buoyancy		
		ignore 25 kN	1	
	(b)	weight = 25 kN		
		allow 24 to 25 kN inclusive	1	
		25 000 = mass × 9.8		
		or		
		$m = \frac{25000}{9.8}$		
		allow their W correctly converted and substituted	1	
		m = 2551 kg	I	
		allow correctly calculated value using their converted W		
		allow a value correctly calculated with W in kN	1	
		m = 2600 kg		
		allow a calculated answer correctly rounded to 2 significant figures		
		an answer of 2600 scores 4 marks	1	

	(c)	Newton's 3rd law (of motion)	1
	(d)	vertical force (50 N) drawn	
		horizontal force (150 N) drawn to the same scale	1
		resultant tension force in the correct direction shown by an arrowhead	1
		value of the tension force in the range 156 N–160 N allow a calculated value of 158	1
		value of direction in the range 18°–20° (from the horizontal) allow 70° to 72° (from the vertical) allow a bearing in the range 288 to 290	1
			[11]
9.	(a)	accept any value between 12 (mm) and 13 (mm) inclusive	1
	(b)	to reduce the error in measuring the extension of the spring accept length for extension throughout	1
		as the ruler at an angle would make the measured extensions shorter	1
	(c)	1 (N) to 6 (N) accept from 0 (N) to 6 (N)	1
	(d)	gives a straight line through the origin	1
	(e)	any practical technique that would improve the accuracy of length measurement eg	I
		use a set square	1
		to line up the bottom of the spring with the ruler scale	
		or	
		attach a horizontal pointer to the bottom of the spring (1)	
		so that the pointer goes across the ruler scale (1)	1
	(f)	the spring has been inelastically deformed	1

		because it went past its limit of proportionality accept elastic limit for limit of proportionality		
		accept it does not go back to its original length when the weights are removed	1 rc	21
10.	(a)	distance is a scalar and displacement is a vector	L-	' 1
		or		
		distance has magnitude only, displacement has magnitude and direction	1	
	(b)	37.5 km		
	(-)	accept any value between 37.0 and 38.0 inclusive	1	
		062° or N62°E		
		accept 62° to the right of the vertical	1	
		accept an angle in the range 60° – 64° accept the angle correctly measured and marked on the diagram		
	(C)	train changes direction so velocity changes	1	
		acceleration is the rate of change of velocity	1	
	(d)	number of squares below line = 17		
		accept any number between 16 and 18 inclusive	1	
		each square represents 500 m	1	
		distance = number of squares × value of each square correctly calculated – 8500 m	1	81
11.	(a)	the distance travelled under the braking force	1	-1
	(b)	the reaction time will increase	1	
		increasing the thinking distance (and so increasing stopping distance) (increases stopping distance is insufficient)	1	
	(c)	No, because although when the speed increases the thinking distance increases by the same factor the braking distance does not.	2	

1

eg

	increasing from 10 m / s to 20 m / s increases thinking distance from 6 m to 12 m but t	he
	braking distance increases from 6 m to 24 m	1
(d)	If the sled accelerates the value for the constant of friction will be wrong.	1
(e)	only a (the horizontal) component of the force would be pulling the sled forward	1
	the vertical component of the force (effectively) lifts the sled reducing the force of the surface on the sled	
		1
(f)	$-u^2 = 2 \times -7.2 \times 22$	
		1
	u = 17.7(99)	1
	18	
	allow 18 with no working shown for 3 marks	L
	allow 17.7(99) then incorrectly rounded to 17 for 2 marks	
		[11]