Mark schemes


```
(d)
                         an answer of 0.016 (kg) scores 5 marks
             E = m \times 2100 \times 15
             E = m \times 334\,000
             5848 = 31 500 m + 334 000 m
             or
             5848 = 365 500 m
                         5848
             m =
                  (31\ 500\ +\ 334\ 000)
             or
                    5848
             m =
                  (365 500)
             m = 0.016 (kg)
                         allow 2 marks for an answer that rounds to 0.186 or
                         0.0175
                         if no other mark scored allow 1 mark for either
                         5848 = m × 2100 × 15
                         or
                         5848 = m × 334 000
                 1.25×10<sup>18</sup>
2.
      (a)
           E =
                 3.16×10<sup>7</sup>
             E = 3.96 × 1010 (J)
                         an answer that rounds to 3.96 \times 10^{10} (J) scores 1 mark
```

1

1

1

1

1

1

1

(b)	t = 86 400 (s	5)	1
	27 000 = 1 >	< 86 400 allow a correct substitution of an incorrectly/not converted value of t	1
	$I = \frac{27\ 000}{86\ 400}$	allow a correct rearrangement using an incorrectly/not converted value of t	1
	l = 0.3125 (A)	
		allow a correct calculation using an incorrectly/not converted value of t allow a correctly calculated answer rounded to 2 or 3 sf	1
(c)	0.15 = usef	iul power output 7800 allow a correct substitution of an incorrectly/not converted value of total power input	
	useful now	ver output =	1
	0.15 × 7800)	
		allow a correct rearrangement using an incorrectly/not converted value of total power input	1
	useful pow	ver output = 1170 (W)	
		this answer only but allow 1200 (W) if correct working shown	1

	(d)	a really large area of land would need to be covered with solar cells	1
		due to the low useful power output of the solar cells	
		allow due to the low efficiency of the solar cells	
		or	
		number of hours of daylight is too low (in UK)	
		or	
		low solar intensity (in UK)	
		or	
		solar radiation (in UK) is too low	
		or	
		material for construction of solar cells and/or lithium batteries is in limited supply	
			1
			[11]
3.	(a)	the total energy of the racing track and the car is constant.	1
	(b)	$E_p = 0.040 \times 9.8 \times 0.90$	
		allow a correct substitution of an incorrectly/not	
			1
		Ep = 0.3528 (J)	
		this answer only	1
			1
		$0.3528 = 0.5 \times 0.040 \times v2$	
		allow a correct substitution of a calculated Ep	
			1
		0.3528	
		$v^2 = \frac{0.0020}{0.5 \times 0.040}$	
		allow a correct rearrangement using a calculated Ep	
			1
		v = 4.2 (m/s)	
		allow an answer consistent with their calculated Ep	
			1

у (н)			
	(c)	more than 0.20 J	1
		(because) the car needs to be moving at the top of the loop	
		(because) the car needs to be moving to complete the loop or	
		not all Ek at B will be transferred to Ep at C	
		this mark is dependent on scoring the first mark	
		allow energy dissipated to the surroundings	
			1
4.	(a)	electric car journey will take a (much) longer time	
		allow diesel car journey will take a shorter time	1
			1
		(because) battery will need recharging	
		or (because) the car will need to stop for 40 minutes	
		allow diesel car will not need to be refuelled	
			1
	(b)	energy stored in diesel = 45 × 51 = 2295 (MJ)	1
		energy stored in batteries = 0.95 × 280 = 266 (MJ)	1
		(so) the diesel stores more energy than the battery (and the diesel car has a higher range)	
		this mark is dependent on correct calculations of energy	
		stored	1
	(c)	any 2 from:	
		recharging is a continuous process allow cars do not need to stop to recharge	
		allow shorter journey times	
		allow don't have to wait for battery to recharge	
		allow longer time between recharges	
		allow the range of the electric car is increased	
		fewer cells needed in the car allow smaller battery needed in the car	
		 more cars can be charged at the same time allow do not need to find a charging point 	
		allow fewer charging stations needed ignore it is quicker	
		ignore cost of charging ignore methods of electricity generation	

[8]

	(d)	when cars are plugged in		
		the energy from car batteries could be transferred back to the National Grid	1	
		allow mains supply for National Grid	1	
		allow energy from car batteries could be used to power household appliances		
			1	[0]
				[9]
5.	(a)	Length of sled	1	
		Time for sled to pass light gate	1	
			1	
	(b)	Ep = 8330(0)	1	
		8330 = m × 9.8 × 17.0		
		allow a correct substitution using an incorrectly/not converted value of Ep	1	
			_	
		$m = \frac{8330}{9.8 \times 17.0}$		
		allow a correct rearrangement using an incorrectly/not converted value of		
		Ер	1	
		m = 50.0 (kg)		
		allow a correct calculation using an incorrectly/not converted value of Ep	1	
			1	
	(c)	¹ / ₂ mv2 = mgh or		
		decrease in Ep = increase in Ek	1	
		masses cancel on both sides of the equation		
		or		
		v2 = 2gh	1	
		(final) speed only depends on vertical height (and gravitational field strength)		
			1	
		variations will be due to air resistance/friction or		
		different initial speed		
			1	[10]
				-

7.	(a)	50	1
		Hz / hertz allow Hertz	1
	(b)	(both) switches need to be closed / on	1
		to complete the series circuit or to allow charge to flow or so there is a current in the circuit	1
	(c)	an answer of 7.5 (A) scores 3 marks an answer of 0.237(A) scores 2 marks	
		1800 = I2 × 32 this mark may be awarded if P is incorrectly or not converted	1
		$I^{2} = \frac{1800}{32}$ or I2 = 56.25	
		this mark may be awaraed if P is incorrectly or not converted	1
		I = 7.5 (A) this answer only	1

	(d)				
			an answer of 300 (s) scores 3 marks an answer of 300 000 (s) scores 2 marks		
		1500 = 450	0000 t		
			this mark may be awarded if P is incorrectly or not		
			Converteu	1	
		450 000	D		
		t =	- this mark may be awarded if D is incorrectly or not		
			converted		
				1	
		t = 300 (s)	this answer only		
				1	
					[10]
8.	(a)	the heating	element of the kettle takes time to heat up		
			anow the kettle takes time to heat up	1	
	(b)	∆⊖ = 78 (°C			
			·	1	
		155 000 =	m × 4200 × 78		
			allow a correct substitution using an incorrect value of $\Delta \Theta$	1	
		155 (000		
		m = 4200	×78		
			allow a correct rearrangement using an incorrect value of $\Delta \Theta$	1	
		m = 0.473	1 (kg)		
			allow a correct calculation of mass using an incorrect value of $\Delta \Theta$		
				1	
		m = 0.47 (l	kg)	1	

	(c)	Gradient =	Δθ	
			allow gradient = rate of temperature increase	
			allow calculation of gradient	1
		$Pt = mc\Delta\Theta$		1
		P = gradie	nt × mc	
				1
	(a)			
9.	()		an answer of 2.5 (m) scores 3 marks	
		1470 = 60	× 9.8 × h	
			this mark may be awarded if Ep is incorrectly / not	
			converteu	1
		1470		
		$h = \frac{1}{60 \times 9.8}$	3	
		$h = \frac{1470}{1470}$		
		588	this mark may be awarded if Ep is incorrectly / not	
			converted	1
		b = 2E(m)		
		II – 2.5 (III)	, this answer only	
				1
	(b)	(work done	against) air resistance	
		(work don	e against) friction (between zip line and pulley)	
		-		I
		causes the	ermal energy to be transferred to surroundings ignore sound energy	
				1

	(c)	different people have different surface areas allow streamlining allow body position		
		body size is insufficient	1	
		so would be affected by air resistance differently		
		or		
		initial speed may not be zero (1)		
		which would add to the total energy (of the system) (1))	
		allow people have different masses / weights ((1)	
		so people have different terminal velocities (1) reference to mass changing the kinetic energy) ' or	
		gravitational potential energy negates both th	ese marks	
			1	[7]
10	(a)	chemical		
10.	()		1	
		equal to		
		allow the same as	1	
		in this order only		
	(h)	power = work done		
		time		
		allow $P = \frac{VV}{t}$		
			1	
	(c)	200 = <u>W</u>		
		1800	1	
		W = 200 × 1800		
			1	
		W = 360 000 (J)	1	
		an answer of 360 000 (J) scores 3 marks		

11.

(d)	11 - 9.5 = 2	1.5 (m/s) allow a change in speed between 1.2 and 1.5 (m/s)	1
	$\left(\frac{1.5}{9.5}\right) \times 10$	0 = 15.8(%)	
		allow an answer consistent with their change in speed an answer of 16 (%) scores 2 marks	
		an answer that rounds to 15.8 (%) scores 2 marks	1
(e)	maximum s	speed is lower	1
	because r	naximum power output of cyclist is constant allow maximum force on pedals is constant	1
	(but) addi	tional work is done (against gravity) do not accept additional work done against friction or air resistance	
	or gravitatio	nal potential energy (of cyclist) is increased	1 [11]
(a)	risk of elect	tric shock (if someone touched the case) allow risk of electrocution (if someone touched the case)	1
(b)	2530 = I ×	230 this mark may be awarded if P is incorrectly / not converted	1
	$I = \frac{2530}{230}$	this mark may be awarded if P is incorrectly / not converted	1
	I = 11 (A)		
		this answer only an answer of 0.011 (A) scores 2 marks	

12.

(c)	E = 2530 × 3	14		
		this mark may be awarded if P is incorrectly / not converted	1	
	E = 35 420	(J) this many such		
		this answer only	1	
	35 420 = n	n × 4200 × 70		
		allow their calculated $E = m \times 4200 \times 70$	1	
	$m = \frac{3542}{4200}$	20 < 70		
		their calculated E		
		a / 0 W m =	1	
	m = 0.12 (kg)		
		allow an answer that is consistent with their calculated value of E	1	
			[9)]
(a)	any three	from:	-	-
	• no <u>Ca</u>	arbon dioxide emitted (to produce electricity)		
		no greenhouse gases is insufficient		
	• doesn't	cause global warming		
		allow climate change or greenhouse effect for global warming		
	• nuclear	power doesn't cause earthquakes		
	more er	nergy released per kg of fuel (compared to shale gas)	3	
(b)	uranium			
plut	onium			
		ignore any numbers given	1	

(b) a <u>description in terms of only atoms negates first two marking points</u> the nucleus splits into two (smaller) nuclei releasing energy (and gamma rays) and (two / three) neutrons 13. (a) $1.2 = \frac{m}{2.3 \times 10^4}$ $m = 1.2 \times 2.3 \times 104$ $m = 27\ 600\ (kg)$ <i>allow an answer of 28 000 (kg) or 2.8 × 104 (kg)</i> or $m = 2.76 \times 104\ (kg)$ <i>an answer of 27 600 (kg) scores 3 marks</i> (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of four so kinetic energy decreases by a factor of eight		
the nucleus splits into two (smaller) nuclei releasing energy (and gamma rays) and (two / three) neutrons 13. (a) $1.2 = \frac{m}{2.3 \times 10^4}$ $m = 1.2 \times 2.3 \times 104$ m = 27600 (kg) <i>allow an answer of 28 000 (kg) or 2.8 × 104 (kg)</i> or $m = 2.76 \times 104 (kg)$ <i>an answer of 27 600 (kg) scores 3 marks</i> (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of four (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight	1	
releasing energy (and gamma rays) and (two / three) neutrons 13. (a) $1.2 = \frac{m}{2.3 \times 10^4}$ $m = 1.2 \times 2.3 \times 104$ $m = 27\ 600\ (kg)$ <i>allow an answer of 28 000 (kg) or $2.8 \times 104\ (kg)$</i> or $m = 2.76 \times 104\ (kg)$ <i>an answer of 27 600 (kg) scores 3 marks</i> (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight	1	
and (two / three) neutrons 13. (a) $1.2 = \frac{m}{2.3 \times 10^4}$ $m = 1.2 \times 2.3 \times 104$ $m = 27\ 600\ (kg)$ allow an answer of 28 000 (kg) or 2.8 × 104 (kg) or $m = 2.76 \times 104\ (kg)$ $an answer of 27\ 600\ (kg) scores 3 marks$ (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of four (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight	1	
13. (a) $1.2 = \frac{m}{2.3 \times 10^4}$ $m = 1.2 \times 2.3 \times 104$ $m = 27\ 600\ (kg)$ <i>allow an answer of 28 000 (kg) or 2.8 × 104 (kg)</i> or $m = 2.76 \times 104\ (kg)$ <i>an answer of 27 600 (kg) scores 3 marks</i> (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight	1	[8]
 m = 1.2 × 2.3 × 104 m = 27 600 (kg) allow an answer of 28 000 (kg) or 2.8 × 104 (kg) or m = 2.76 × 104 (kg) an answer of 27 600 (kg) scores 3 marks (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight 	1	
 m = 27 600 (kg) allow an answer of 28 000 (kg) or 2.8 × 104 (kg) or m = 2.76 × 104 (kg) an answer of 27 600 (kg) scores 3 marks (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight 	1	
 or m = 2.76 × 104 (kg)		
 m = 2.76 × 104 (kg) an answer of 27 600 (kg) scores 3 marks (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight 		
an answer of 27 600 (kg) scores 3 marks (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight	1	
 (b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two (wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight 		
(wind speed is halved) decreasing kinetic energy by a factor of four so kinetic energy decreases by a factor of eight	1	
so kinetic energy decreases by a factor of eight	1	
	1	
allow power output for kinetic energy throughout	*	

14.

(c)	388 000 = 0.5 × 13 800 × v2 this mark may be awarded if P is incorrectly / not converted	1
	$v^2 = \frac{(2 \times 388000)}{13800}$	
	this mark may be awarded if P is incorrectly / not converted	
	or	
	$v^2 = \frac{388000}{(0.5 \times 13800)}$	
	or	
	v2 = 56.2	1
	v = 7.50 (m/s) an answer that rounds to 7.50 (m/s) only	1
(a)	potential difference allow p.d. allow voltage	1
	temperature	
	<i>in this order only</i>	1
(b)	the current increases (when the potential difference increases)	1
	(which) causes the temperature of the filament to increase	1
	(so) the resistance increases	
	do not accept resistance increases and then levels off	1
(c)	a higher proportion / percentage of the (total) power / energy input is usefully transferred	
	wustes less energy is insufficient	
	UI	

higher (useful) power / energy output for the same (total) power / energy input

(d)	potential difference increases		1
	current de	ecreases	1
<i>(</i>)			I
(e)	1000(())	reason only scores if R = 1000 (Ω)	1
	notential difference is shared in proportion to the resistance		I
	potentiar	allow a justification using a correct calculation	1
(f)	12 = I × 700	00	1
	$I = \frac{12}{7000}$		1
	I = 1.71 × 10−3 (A)		
		an answer that rounds to $1.7 \times 10_{-3}$ (A) scores 3 marks	1
	I = 1.7 × 10−3 (A)		
		this answer only	
	or		
	I = 0.0017 (A)		
		an answer of 2.4 × 10–3 (A) scores 2 marks	
		if no other marks scored allow 1 mark for calculation of total resistance (7000 Ω)	
		an answer of 1.7 × 10–3 (A) scores 4 marks	1
			[14]