Mark schemes

1. (a) Initial temperature was a control variable
(b) copper
greater change in mass (than the other metals)
this mark is dependent on scoring the first mark allow more ice melted (than the other metals) allow the ice melted faster (than the other metals)
(c) variation in initial mass of ice cube
allow variation in initial volume of ice cube or
surface area of the ice cube touching the metal
allow melting of ice while handling
allow variation in room temperature
allow initial temperature of metal block
(d)

an answer of $0.016(\mathrm{~kg})$ scores 5 marks

$E=m \times 2100 \times 15$
$E=m \times 334000$
$5848=31500 m+334000 m$
or
$5848=365500 \mathrm{~m}$
$\mathrm{m}=\frac{5848}{(31500+334000)}$
$\mathrm{m}=\frac{5848}{(365500)}$
$\mathrm{m}=0.016(\mathrm{~kg})$
allow 2 marks for an answer that rounds to 0.186 or 0.0175
if no other mark scored allow 1 mark for either $5848=m \times 2100 \times 15$
or
$5848=m \times 334000$
2. (a) $E=\frac{1.25 \times 10^{18}}{3.16 \times 10^{7}}$
$E=3.96 \times 1010(J)$
an answer that rounds to 3.96×10^{10} (J) scores 1 mark
(b) $t=86400(\mathrm{~s})$
$27000=1 \times 86400$
allow a correct substitution of an incorrectly/not converted value of t
$I=\frac{27000}{86400}$
allow a correct rearrangement using an incorrectly/not converted value of t

$$
I=0.3125(A)
$$

allow a correct calculation using an incorrectly/not converted value of t allow a correctly calculated answer rounded to 2 or 3 sf
(c) $0.15=\frac{\text { useful power output }}{7800}$
allow a correct substitution of an incorrectly/not converted value of total power input
useful power output = 0.15×7800
allow a correct rearrangement using an incorrectly/not converted value of total power input
useful power output = $1170(\mathrm{~W})$
this answer only but allow 1200 (W) if correct working shown
(d) a really large area of land would need to be covered with solar cells
due to the low useful power output of the solar cells allow due to the low efficiency of the solar cells or number of hours of daylight is too low (in UK)
or
low solar intensity (in UK)
or
solar radiation (in UK) is too low
or
material for construction of solar cells and/or lithium batteries is in limited supply
3. (a) the total energy of the racing track and the car is constant.
$\mathrm{Ep}=0.3528(\mathrm{~J})$
this answer only
$0.3528=0.5 \times 0.040 \times v 2$ allow a correct substitution of a calculated Ep

$$
\mathrm{v}^{2}=\frac{0.3528}{0.5 \times 0.040} \quad \begin{aligned}
& \text { allow a correct rearrangement using a calculated } E p
\end{aligned}
$$

$$
\mathrm{v}=4.2(\mathrm{~m} / \mathrm{s})
$$

allow an answer consistent with their calculated Ep

1
(c) more than 0.20 J
(because) the car needs to be moving at the top of the loop
or
(because) the car needs to be moving to complete the loop or
not all Ek at B will be transferred to Ep at C
this mark is dependent on scoring the first mark
allow energy dissipated to the surroundings
4. (a) electric car journey will take a (much) longer time allow diesel car journey will take a shorter time
(because) battery will need recharging or (because) the car will need to stop for 40 minutes allow diesel car will not need to be refuelled
(so) the diesel stores more energy than the battery (and the diesel car has a higher range)
this mark is dependent on correct calculations of energy stored
(c) any $\mathbf{2}$ from:

- recharging is a continuous process
allow cars do not need to stop to recharge
allow shorter journey times
allow don't have to wait for battery to recharge
allow longer time between recharges
allow the range of the electric car is increased
- fewer cells needed in the car
allow smaller battery needed in the car
- more cars can be charged at the same time
allow do not need to find a charging point
allow fewer charging stations needed
ignore it is quicker
ignore cost of charging
ignore methods of electricity generation
(d) when cars are plugged in
the energy from car batteries could be transferred back to the National Grid
allow mains supply for National Grid
allow energy from car batteries could be used to power household appliances

5. (a) Length of sled

Time for sled to pass light gate
(b) $\mathrm{Ep}=8330$ (J)
$8330=m \times 9.8 \times 17.0$
allow a correct substitution using an incorrectly/not converted value of Ep
$\mathrm{m}=\frac{8330}{9.8 \times 17.0}$
allow a correct rearrangement using an incorrectly/not converted value of Ep
$\mathrm{m}=50.0(\mathrm{~kg})$
allow a correct calculation using an incorrectly/not converted value of Ep
1

1
(c) $1 / 2 \mathrm{mv} 2=\mathrm{mgh}$
or
decrease in Ep = increase in Ek
masses cancel on both sides of the equation
or
$\mathrm{v} 2=2 \mathrm{gh}$
(final) speed only depends on vertical height (and gravitational field strength)
variations will be due to air resistance/friction
or
different initial speed
6. (a) $\%$ increase $=\frac{(10000-3200)}{3200} \times 100$
$\%$ increase = $212.5(\%)$
(b) Any two from:

- no sulfur dioxide released
- doesn't cause acid rain
- no particulates released
- doesn't cause global dimming
- less carbon dioxide released (per kg of fuel burned) less global warming
- allow less climate change allow less greenhouse gases
- no solid waste
- gas mining is less destructive than coal mining
ignore less air pollution
(c) mean sea surface temperature shows a (steady) increase
over the time period on the graph
conditional on scoring 1st marking point allow between a correct pair of dates at least 10 years apart

or

from $16.45\left({ }^{\circ} \mathrm{C}\right)$ to $16.96\left({ }^{\circ} \mathrm{C}\right)$ allow a correct pair of temperatures at least 10 years apart
(d) thermistor C
(because) the change in resistance is greatest conditional on scoring 1st marking point allow the gradient is highest allow more sensitive to temperature change
between 0 and $25^{\circ} \mathrm{C}$
conditional on scoring 2nd marking point
allow between 16 and $17{ }^{\circ} \mathrm{C}$
if thermistor C is not chosen, allow for 1 mark each: not thermistor A because there is no/little change in resistance not thermistor B as there is only a small change in resistance not thermistor D as there is no data available between 0 and $40^{\circ} \mathrm{C}$
7. (a) 50

Hz / hertz
allow Hertz
(b) (both) switches need to be closed / on
to complete the series circuit
or
to allow charge to flow
or
so there is a current in the circuit
(c)
an answer of 7.5 (A) scores 3 marks
an answer of $0.237(A)$ scores $\mathbf{2}$ marks
$1800=12 \times 32$
this mark may be awarded if P is incorrectly or not converted
$1^{2}=\frac{1800}{32}$
or
$12=56.25$
this mark may be awarded if P is incorrectly or not converted
$\mathrm{I}=7.5(\mathrm{~A})$ this answer only
(d)
an answer of 300 (s) scores 3 marks
an answer of 300000 (s) scores 2 marks
$1500=\frac{450000}{\mathrm{t}}$
this mark may be awarded if P is incorrectly or not converted
8. (a) the heating element of the kettle takes time to heat up allow the kettle takes time to heat up
(b) $\Delta \Theta=78\left({ }^{\circ} \mathrm{C}\right)$
$155000=m \times 4200 \times 78$ allow a correct substitution using an incorrect value of $\Delta \theta$
$m=\frac{155000}{4200 \times 78}$
allow a correct rearrangement using an incorrect value of $\Delta \theta$
$\mathrm{m}=0.4731$ (kg)
allow a correct calculation of mass using an incorrect value of $\Delta \theta$
$m=0.47(\mathrm{~kg})$
(c) Gradient $=\frac{\Delta \theta}{\mathrm{t}}$
allow gradient = rate of temperature increase allow calculation of gradient
$\mathrm{Pt}=\mathrm{mc} \Delta \Theta$
$P=$ gradient $\times m c$
9. (a)
an answer of $2.5(m)$ scores 3 marks
$1470=60 \times 9.8 \times h$
this mark may be awarded if Ep is incorrectly / not converted
$h=\frac{1470}{60 \times 9.8}$
or
$h=\frac{1470}{588}$
this mark may be awarded if Ep is incorrectly / not converted
$\mathrm{h}=2.5(\mathrm{~m})$
this answer only
(b) (work done against) air resistance
or
(work done against) friction (between zip line and pulley)
causes thermal energy to be transferred to surroundings ignore sound energy
(c) different people have different surface areas
allow streamlining
allow body position
body size is insufficient
so would be affected by air resistance differently
or
initial speed may not be zero (1)
which would add to the total energy (of the system) (1)
allow people have different masses / weights (1)
so people have different terminal velocities (1)
reference to mass changing the kinetic energy or gravitational potential energy negates both these marks

1
[7]
10. (a) chemical
equal to
allow the same as
in this order only
(b) power $=\frac{\text { work done }}{\text { time }}$
allow $P=\frac{W}{t}$
1
(c) $200=\frac{W}{1800}$
$W=200 \times 1800$

W = 360000 (J)
(d) $11-9.5=1.5(\mathrm{~m} / \mathrm{s})$
$\left(\frac{1.5}{9.5}\right) \times 100=15.8(\%)$
allow an answer consistent with their change in speed an answer of 16 (\%) scores 2 marks an answer that rounds to 15.8 (\%) scores 2 marks
(e) maximum speed is lower
because maximum power output of cyclist is constant allow maximum force on pedals is constant
(but) additional work is done (against gravity)
do not accept additional work done against friction or air resistance
or
gravitational potential energy (of cyclist) is increased
11. (a) risk of electric shock (if someone touched the case) allow risk of electrocution (if someone touched the case)
(b) $2530=\mathrm{I} \times 230$
this mark may be awarded if P is incorrectly / not converted
$I=\frac{2530}{230}$
this mark may be awarded if P is incorrectly / not converted
$\mathrm{I}=11(\mathrm{~A})$
this answer only
an answer of 0.011 (A) scores 2 marks
an answer of 11 (A) scores $\mathbf{3}$ marks
(c) $\mathrm{E}=2530 \times 14$
this mark may be awarded if P is incorrectly / not converted

$$
\begin{aligned}
& \mathrm{E}=35420(\mathrm{~J}) \\
& \text { this answer only }
\end{aligned}
$$

$35420=m \times 4200 \times 70$
allow their calculated $E=m \times 4200 \times 70$
$m=\frac{35420}{4200 \times 70}$
allow $m=\frac{\text { their calculated } E}{4200 \times 70}$
$\mathrm{m}=0.12(\mathrm{~kg})$
allow an answer that is consistent with their calculated value of E
12. (a) any three from:

- no carbon dioxide emitted (to produce electricity) no greenhouse gases is insufficient
- doesn’t cause global warming allow climate change or greenhouse effect for global warming
- nuclear power doesn't cause earthquakes
- more energy released per kg of fuel (compared to shale gas)
(b) uranium
or
plutonium
ignore any numbers given
(c) a neutron is absorbed by a (large) nucleus a description in terms of only atoms negates first two marking points
the nucleus splits into two (smaller) nuclei
releasing energy (and gamma rays)
and (two / three) neutrons

13. (a) $\quad 1.2=\frac{\mathrm{m}}{2.3 \times 10^{4}}$
$m=1.2 \times 2.3 \times 104$
$\mathrm{m}=27600(\mathrm{~kg})$ allow an answer of $28000(\mathrm{~kg})$ or $2.8 \times 104(\mathrm{~kg})$
or
$m=2.76 \times 104(\mathrm{~kg})$
an answer of $27600(\mathrm{~kg})$ scores 3 marks
(b) mass of air passing the turbine blades is halved which decreases kinetic energy by a factor of two
(wind speed is halved) decreasing kinetic energy by a factor of four
so kinetic energy decreases by a factor of eight

1

1
allow power output for kinetic energy throughout
(c) $388000=0.5 \times 13800 \times v 2$ this mark may be awarded if P is incorrectly / not converted

$$
\begin{aligned}
& \mathrm{v}^{2}=\frac{(2 \times 388000)}{13800} \\
& \text { this mark may be awarded if } P \text { is incorrectly / not converted } \\
& \text { or } \\
& \mathrm{v}^{2}=\frac{388000}{(0.5 \times 13800)} \\
& \text { or } \\
& \mathrm{v} 2=56.2 \\
& \mathrm{v}=7.50(\mathrm{~m} / \mathrm{s}) \\
& \text { an answer that rounds to } 7.50(\mathrm{~m} / \mathrm{s}) \text { only }
\end{aligned}
$$

14. (a) potential difference allow p.d. allow voltage in this order only
(b) the current increases (when the potential difference increases)
(which) causes the temperature of the filament to increase
(so) the resistance increases
do not accept resistance increases and then levels off
(c) a higher proportion / percentage of the (total) power / energy input is usefully transferred
wastes less energy is insufficient
or
higher (useful) power / energy output for the same (total) power / energy input
(d) potential difference increases

current decreases

(e) $1000(\Omega)$

$$
\text { reason only scores if } R=1000(\Omega)
$$

potential difference is shared in proportion to the resistance allow a justification using a correct calculation

1

1

$$
I=\frac{12}{7000}
$$

$$
I=1.71 \times 10-3(A)
$$

an answer that rounds to $1.7 \times 10-3(A)$ scores 3 marks
$\mathrm{I}=1.7 \times 10-3(\mathrm{~A})$
this answer only
or
$\mathrm{I}=0.0017(\mathrm{~A})$
an answer of $2.4 \times 10-3(A)$ scores 2 marks
if no other marks scored allow 1 mark for calculation of total resistance (7000 Ω)
an answer of $1.7 \times 10-3(A)$ scores 4 marks

