Energy (F)

Mark schemes

1. (a) A: transmission / power cables allow transmission / power lines
allow cables ignore wires

B: step-down transformer
(b) less thermal energy is transferred to the surroundings.
(c) charge flow $=\frac{500000000}{25000}$

$$
\text { charge flow = } 20000 \text { (C) }
$$

(d) total current $=7.20$ (A)

$$
\begin{aligned}
& \mathrm{P}=230 \times 7.20 \\
& \quad \text { allow a correct substitution of an incorrect total current }
\end{aligned}
$$

allow a correct calculation using an incorrect total current
(e) dishwasher
has the largest current
or
has the largest power (input)
1
(f) $E=600 \times 32000000$
$E=19200000000(J)$
or
$\mathrm{E}=1.92 \times 1010(\mathrm{~J})$

$$
P=1656(W)
$$

2. (a) (fixed) solar cells aren't always pointed (directly) at the Sun
or
(fixed) solar cells don't track the Sun (through the sky)
(fixed) solar cells don't (always) receive maximum intensity of solar radiation allow solar cells won't receive as much (solar) energy allow solar cells won't generate as much electricity
(b) $\mathrm{Q}=3.5 \times 3600$

$$
\mathrm{Q}=12600(\mathrm{C})
$$

(d)
$0.16=\frac{\text { useful power output }}{7500}$
useful power output =
0.16×7500
useful power output = $1200(\mathrm{~W})$
(e) the energy becomes less useful
(f) a very large area would need to be covered with solar cells
3. (a) uniform acceleration
allow constant / steady acceleration allow velocity / speed increasing at a constant rate
ignore reference to direction
acceleration scores 1 mark
or
velocity / speed is increasing scores 1 mark
do not accept acceleration increases
(b) up(wards)
(c) a group of objects that interact
(d) velocity just after bounce is less than just before bounce
allow velocity is less / decreases
velocity decreases to zero - on its own scores zero
or
the height at the top of the bounce is less than the height from which it was dropped
so the ball has lost energy
correct reference to (loss of) ke or (reduced) gpe
4. (a) higher
(b) low(er)
hot(ter) allow warm(er)
(c) advantage:

- water heated continuously (by the Sun)
one disadvantage from:
- temperature of water is lower (for most of the time than water heated by
- waitermengioot bedterenough
allow less control over water temperature
- it takes longer to heat the water
(d) $\frac{4030000}{4070000}$
0.99
an answer of 99\% scores 2 marks
an answer of 99 or 0.99\% scores 1 mark
an answer of 0.99 scores 2 marks
allow an answer that rounds to 0.99 for $\mathbf{2}$ marks
(e) power = energy transferred / time
allow $P=E / t$
(f) $5000=\frac{4070000}{t}$
$t=\frac{4070000}{5000}$
$t=814$
seconds
other units of time must be consistent with numerical value
an answer of 814 seconds scores 4 marks
an answer of 13.57 minutes scores 4 marks

5. (a) gravitational potential
this order only
kinetic
(b) kinetic energy $=0.5 \times$ mass \times speed 2
or
$E k=1 / 2 m v 2$
(c) $5040=0.5 \times \mathrm{m} \times 122$

1

$$
\begin{aligned}
& \mathrm{m}=\frac{5040}{0.5 \times 12^{2}} \\
& \mathrm{~m}=70(\mathrm{~kg})
\end{aligned}
$$

(d) the thermal energy increases.
6. (a) the polarity (of the supply) does not change allow potential difference in one direction (only)
(b) energy transferred $=$ power \times time
(c) $162000000=7200 \times t$

$$
t=\frac{162000000}{7200}
$$

$$
t=22500(\mathrm{~s})
$$

(d) $\quad V=I \times R$
(e) $480=15 \times \mathrm{R}$

$$
R=\frac{480}{15}
$$

$$
\mathrm{R}=32(\Omega)
$$

(f) time taken using system \mathbf{A} is double the time of system \mathbf{B}
7. (a) nuclei
(b) $\mathrm{m}=0.004(\mathrm{~kg})$

$$
\begin{aligned}
& \mathrm{E}=0.004 \times 5200 \times 50000000 \\
& \begin{array}{l}
\text { allow a correct substitution of an incorrectly/not } \\
\\
\\
\text { converted value of } m
\end{array}
\end{aligned}
$$

$E=1.04 \times 109(J)$
Or
E = 1040000000 (J)
allow a correct calculation using an incorrectly/not converted value of m
(c) any two from:

- to make sure the fusion process is possible to develop an understanding of the process
- to make adaptations to the process to assess the efficiency of the process to
- make predictions
- assess safety risks
: to assess environmental impact
- set-up cost is lower (for small scale experiments)
(d) releases carbon dioxide
allow releases greenhouse gases
which causes global warming allow which causes climate change

OR

releases particulates
which causes global dimming
or
which cause breathing problems

OR

releases sulfur dioxide
which cause acid rain

OR

releases nitrogen oxides
which cause breathing problems
Or
which causes acid rain
8. (a) Level 2: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

Factors

- poor condition of tyres
- poor road surface
- wet or icy road
- poor/worn brakes

Explanation

- because of decreased friction

Factors

- increased mass of car/passengers

Explanation

- increases kinetic energy of car
- more work needs to be done to stop car
- increases momentum of the car

Factor

- road slopes downhill

Explanation

- (a component of) gravity opposes the braking force resultant (braking) force is reduced
allow answers in terms of reducing braking distance throughout

A single factor with no related explanation is insufficient to score a mark
(b) resultant force $=$ mass \times acceleration
(c) $7200=1600 \times a$ ignore negatives throughout

$$
a=\frac{7200}{1600}
$$

$$
a=4.5(\mathrm{~m} / \mathrm{s} 2)
$$

(d) 15 (m) 38 (m)
$=53(\mathrm{~m})$
allow the correct addition of a misread braking distance and /or a misread thinking distance taken from the graph
(e) $p=\frac{F}{A}$
(f) $120000=\frac{60}{A}$

$$
A=\frac{60}{120000}
$$

$$
A=0.0005
$$

$$
A=5(.0) \times 10-4
$$

allow an answer given to 2 sig figs from an incorrect calculation using the given data
m^{2}
(b) $\mathrm{Ep}=62.5 \times 9.8 \times 16.0$
$E p=9800(J)$
(c) $\mathrm{Ek}=0.5 \times 62.5 \times 122$

$$
E k=4500(J)
$$

(d) Any two from:

- speed (at bottom of slide)
- friction(between sled and ground)
allow mass/weight of rider (and sled)
allow surface type
- air resistance

10.

(a) density $=\frac{\text { mass }}{\text { volume }}$
or
$\rho=\frac{m}{V}$
1
(b) $998=\frac{\mathrm{m}}{6500000}$
$m=998 \times 6500000$
$m=6487000000$
$m=6.487 \times 109(\mathrm{~kg})$
allow a correct conversion of their calculated value of mass into standard form
(c) energy transferred $=$ power \times time
E ㄹ t
1
(d) $\begin{aligned} & t=18000(\mathrm{~s}) \\ & \text { or }\end{aligned}$
$t=5 \times 60 \times 60$
1
$E=1.5 \times 109 \times 18000$
allow a correct substitution using an incorrectly/not converted value of t
1
$E=2.7 \times 1013(\mathrm{~J})$ allow a correct calculation using an incorrectly/not converted value of t
(e) the variation in demand is (much) greater than $1.5 \times 109 \mathrm{~W}$
allow the increase in demand is greater than the (power) output of the (hydroelectric) power station
demand remains high for longer than 5 hours allow 04:00 to 16:00 is 12 hours allow 04:00 to 16:00 is greater than 5 hours
11. (a) $\mathrm{K}=$ step-up transformer
$\mathrm{L}=$ transmission cables
allow power cables
ignore wires

M = step-down transformer
allow 1 mark if K and M are labelled transformer but step-up and step-down labels are incorrect or not present
(b) 8 (\%) and 32 (\%)
(b) 8 (\%) and 32 (\%)

Number of times $=4$
(c) (burning gas) releases carbon dioxide
which causes global warming allow greenhouse effect or climate change
(d) An energy resource that can be replenished quickly.
(e) higher power output
allow more electricity generated
lower variation in power output
12. (a) kg
(b)

(c) $\mathrm{P}=122 \times 15$

$$
P=2160(W)
$$

(d) The heating element in the kettle takes time to heat up
(e) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced 3-4

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content:

- measure the mass of water using a balance
or
measure the volume of water using a measuring cylinder
- measure the initial temperature of the water
- pour the water into the kettle
- put temperature probe in the water
or
put a thermometer in the water
- switch kettle on
- record temperature
- measure time with a stopclock
- use an interval of 5 seconds
(f) $\Delta \Theta=80\left({ }^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& E=0.50 \times 4200 \times 80 \\
& \quad \text { allow } E=0.50 \times 4200 \times \text { their value of } \Delta \theta
\end{aligned}
$$

$$
E=168000(J)
$$

allow an answer consistent with their value of $\Delta \theta$
(g) $\mathrm{m}=0.005(\mathrm{~kg})$

$$
E=0.005 \times 2260000
$$

this mark may score if m is not/incorrectly converted

$$
E=11300(J)
$$

allow an answer consistent with their value of m
13. (a) use a tape measure allow use a metre rule allow use a laser measure
one person holding the top and another person holding the bottom or
use a set square to ensure tape measure is vertical
allow use a plumb-line to ensure tape measure is vertical
or
take repeat readings and calculate a mean
(b) $\mathrm{Ep}=45 \times 9.8 \times 2.0$
an answer of 880 (J) or 882 (J) scores 2 marks
$\mathrm{Ep}=880(\mathrm{~J})$
(c) any $\mathbf{3}$ from:

- change in vertical height
- mass / weight
- speed / velocity
- air resistance or drag
allow body position
allow wind
- friction (between zip line and pulley)
- gradient / angle (of the zip wire)
- length of zip wire
ignore gravitational field strength
3

[7]

14. (a)

1
(b) charge flow $=$ current \times time
or

$$
Q=I t
$$

(c) $\mathrm{I}=0.050(\mathrm{~A})$
$\mathrm{Q}=0.050 \times 14400$ allow a correct substitution using an incorrectly/not converted value of I

1
$Q=720(C)$
allow a correct calculation using an incorrectly/not converted value of I
(d) there is no current in a diode (in the reverse direction) or charge will not flow through a diode (in the reverse direction) allow diode will not conduct (electric charge) do not accept the circuit is not complete
(because) a diode has a (very) high resistance (in the reverse direction)
(e) Efficiency $=\frac{\text { Useful power output }}{\text { Total power input }}$

Useful power output $=0.75 \times 0.24$

Useful power output $=0.18(\mathrm{~W})$
15. (a) carbon dioxide released greenhouse gases is insufficient carbon emissions is insufficient allow CO2
causing global warming
allow climate change
allow named consequence of global warming allow greenhouse effect
air pollution is insufficient

OR

particulates released (1)
causing global dimming (1)
OR
sulfur dioxide released (1)
allow SO2
causing acid rain (1)
(b) any $\mathbf{2}$ from:
do not accept solar

- wind
- tidal
- wave
- hydroelectric
allow pumped storage
hydro is insufficient
- geothermal
- biofuel
(c)
an answer of 22 (\%) scores 2 marks
100-78
allow 1 mark for calculating percentage of named resources (78\%)

22 (\%)
(d)
an answer of 12500 (MW) scores 2 marks
maximum demand $=37500$ (MW)
and
minimum demand $=25000(\mathrm{MW})$
difference in demand = 12500 (MW)
(e) solar panels generate electricity from light
solar panels make energy is insufficient
power output would increase throughout the morning
or
power output would increase (between 06:00 and 09:00)
or
(between 06:00 and 09:00) the Sun is rising / shining
16. (a) (the diesel car has a) higher range
allow less frequent refuelling needed
(the diesel car) power source has a lower mass
allow the power source has a lower weight
the diesel car has a lower mass is insufficient
(b)
a correct answer that rounds to 26 (\%) scores 2 marks
$\%$ of total mass $=\frac{420}{1610}(\times 100)$
allow 1 mark for an answer of 0.26
\% of total mass = 26 (\%)
(c) any $\mathbf{2}$ from:
increase the range of electric cars
increase the time between recharges

- decrease the (total) mass of the electric car
- greater acceleration
(e)
an answer of 60 (s) scores 3 marks
$420000=7000 \times t$
$t=420000 / 7000$
$\mathrm{t}=60(\mathrm{~s})$

17. (a) To reduce energy transfer to the surroundings
(b) scald / burn (to skin)
ignore risk of electric shock
(c) $1^{\circ} \mathrm{C}$
(d) 0.06 kg

1

1
(e)
$26400=0.20 \times c \times 30$
$c=\frac{26400}{(0.20 \times 30)}$
or
$c=\frac{26400}{6}$
$c=4400$
$\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
18. (a) The energy transferred each second to the bulb.
(b) power $=$ potential difference \times current

$$
P=V I
$$

(c) an answer of 0.17 (A) scores 3 marks
$40=1 \times 230$
$I=\frac{40}{230}$
$\mathrm{I}=0.17$ (A)
(d)

$$
\text { efficiency }=\frac{\text { useful power output }}{\text { total power input }}
$$

(e)
$0.30=\frac{\text { useful power output }}{9.0}$
useful power output $=0.30 \times 9.0$
useful power output $=2.7(\mathrm{~W})$
(f) bulbs also transfer thermal energy
allow light bulbs emit infrared radiation as well as visible light
ignore so people know how bright the bulb is
the efficiency of the light bulb also needs to be considered allow the cost to power the light bulb depends on the efficiency
allow to see how much energy is wasted
19. (a)
an answer of 0.50 scores 3 marks
allow a correct answer that rounds to 0.50 for 3 marks
$41=\frac{9.8 \times h}{0.12}$
$\mathrm{h}=\frac{41 \times 0.12}{9.8}$
$h=0.50(\mathrm{~m})$
(b) kinetic energy $=0.5 \times$ mass $\times($ speed $) 2$
or
$E k=1 / 2 m v 2$
(c)
$270=1 / 2 \times m \times 32$
$m=\frac{270}{\left(1 / 2 \times 3^{2}\right)}$
or
$m=\frac{270}{4.5}$
$m=60(\mathrm{~kg})$

Level 1: Relevant features are identified and differences noted.

No relevant content

Indicative content

- males have a greater muscle power than females for most of their lives • males have a greater muscle power than females above 9/10 years old • males have a lower muscle power than females below 9/10 years old
- there is a similar pattern for males and females as age increases
- males have a peak muscle power at 25 years old whereas females have a peak muscle power at 20/21 years old
- at 9/10 years old males have the same muscle power as females
- peak muscle power for males $(47 \mathrm{~W} / \mathrm{kg})$ is greater than peak muscle power for females ($37 \mathrm{~W} / \mathrm{kg}$)
- the rate of increase of muscle power is greater for males than females
- (between 5 and 25 years old)

Ignoreıferamedftfecteasing fonstrengatower is greater for males than females.
(e) any $\mathbf{1}$ from:

- maximum height reached is a better indicator of maximum muscle power allow maximum time in the air for maximum height reached / jumped
- maximum / peak muscle power was being investigated, not mean / average muscle power
- volunteer may not use maximum effort on the first try
- performance may improve with practice
- performance may get worse with tiredness
(a) Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- Wrap N layers of newspaper around the metal can
- Heated water in a kettle
or
Using a Bunsen burner
- Put hot water in the metal can - Use a measuring cylinder to measure the volume of water - Measure initial and final temperature with the digital thermometer - Use a stopclock / stopwatch to measure a time of 5 minutes - Calculate temperature decrease - Repeat with different number of layers of newspaper - Repeat with no layers of newspaper • Use same initial temperature of hot water - Use same volume of water each time Level 3: Workable method which includes changing the number of layers and includes at least one control variable (same volume of water or same starting temperature)
(b) the digital thermometer and the datalogger have the same resolution allow both measure to 1 d.p. ignore accuracy ignore precision
they give the same result is insufficient

1
only need to measure the start and end temperature
or
only need 2 readings
or
only need to calculate the temperature change
21. (a) chemical
kinetic
in this order only
(b) $\mathrm{Ek}=0.5 \times 80 \times 122$

$$
\mathrm{Ek}=5760(\mathrm{~J})
$$ an answer of 5760 (J) scores 2 marks

(c) $\mathrm{E}=0.040 \times 480 \times 50$

$$
\mathrm{E}=960(\mathrm{~J})
$$

an answer of 960 (J) scores 2 marks
(d) increased
22. (a) nucleus
neutron
gamma rays
1

1

1
in this order only
(b) $\frac{25000000}{2400000}$

11
an answer of 10.4 with no working scores 1 mark an answer of 11 scores $\mathbf{2}$ marks
(c) any two from:

- waste is radioactive allow nuclear waste
- waste has a long half-life allow waste remains dangerous for a long time
- waste is toxic
- waste needs to be buried allow waste is difficult to dispose of
- risk of catastrophic accidents allow named accident e.g. Fukushima, Chernobyl, Three Mile Island
- fuel is non-renewable
(d) similarity:
(carbon dioxide concentration and global temperature have) both increased allow they both show a positive correlation

difference:

the carbon dioxide (concentration) continues to increase whereas temperature (increase) levels off allow carbon dioxide (concentration) increases more quickly than temperature (increase)
23. (a) $\mathrm{P}=\frac{120000}{8.0}$

$$
P=15000(W)
$$

(b) energy is transferred in heating the surroundings
friction causes energy to be transferred in non-useful ways
(c) the switches are in parallel
(so) closing either switch completes the circuit
(d) gravitational potential energy $=$ mass \times gravitational field strength \times height allow $E p=m g h$
(e) $\mathrm{Ep}=280 \times 9.8 \times 14$

$$
\text { Ep = } 38416 \text { (J) }
$$

$E p=38000(J)$
an answer that rounds to 38000 scores $\mathbf{2}$ marks
an answer of 38000 scores 3 marks
24. (a) power output increases (to meet demand) due to people returning home from work / school accept many electrical appliances are switched on (which increases demand)
accept other sensible suggestions
(b) 00.00
accept midnight
1
allow answers between 00.00 and 04.00
(c) any two from:

- conserves fuel reserves
- spare capacity to compensate for unreliable renewable resources
- provides spare capacity in case of power station emergency shut-down
- so as to not make unnecessary environmental impact

25. (a) $0.1\left({ }^{\circ} \mathrm{C}\right)$
(b) power = energy transferred / time

$$
\begin{aligned}
& \text { allow } P=E / t \\
& \text { allow } E=P \times t
\end{aligned}
$$

(c) $1050 / 300$
3.5 (W)

1
accept 3.5 (W) with no working shown for 2 marks
(d) $1050=m \times 4200 \times 0.6$
$m=1050 /(4200 \times 0.6)$

$$
\mathrm{m}=0.417(\mathrm{~kg})
$$

(e) any one from:

- energy used to heat metal pan (as well as the water)
- energy transfer to the surroundings (through the insulation)
- angle of solar radiation will have changed during investigation
- intensity of solar radiation may have varied during investigation

