Mark schemes

-	-	
	1	
	-	•

(a) A: transmission / power cables allow transmission / power lines allow cables ignore wires

	B: step-down transformer		
		1	
(b)	less thermal energy is transferred to the surroundings.	1	
(c)	charge flow = $\frac{500\ 000\ 000}{25\ 000}$	1	
	charge flow = 20 000 (C)	1	
(d)	total current = 7.20 (A)	1	
	P = 230 × 7.20 allow a correct substitution of an incorrect total current	1	
	P = 1656 (W) allow a correct calculation using an incorrect total current	1	
(e)	dishwasher	1	
	has the largest current		
	or has the largest power (input)	1	
(f)	E = 600 × 32 000 000	1	
	E = 19 200 000 000 (J) or		
	E = 1.92 × 1010 (J)	1	[12]

2.	(a)	(fixed) solar cells aren't always pointed (directly) at the Sun or	
		(fixed) solar cells don't track the Sun (through the sky)	1
		(fixed) solar cells don't (always) receive maximum intensity of solar radiation allow solar cells won't receive as much (solar) energy	
		allow solar cells won't generate as much electricity	1
	(b)	Q = 3.5 × 3600	1
		Q = 12 600 (C)	1
	(C)	efficiency = $\frac{\text{useful power output}}{\text{total power input}}$	1
	(d)	$0.16 = \frac{\text{useful power output}}{7500}$	1
		useful power output = 0.16 × 7500	1
		useful power output = 1200 (W)	1
	(e)	the energy becomes less useful	1
	(f)	a very large area would need to be covered with solar cells	1 [10]
3.	(a)	uniform acceleration allow constant / steady acceleration allow velocity / speed increasing at a constant rate ignore reference to direction acceleration scores 1 mark or velocity / speed is increasing scores 1 mark do not accept acceleration increases	2
	(b)	up(wards)	1

4.

(c) a group of objects that interact

(C)		1	
(d)	velocity just after bounce is less than just before bounce allow velocity is less / decreases velocity decreases to zero – on its own scores zero		
	or		
	the height at the top of the bounce is less than the height from which it was dropped	1	
	so the ball has lost energy	1	
	correct reference to (loss of) ke or (reduced) gpe	1	
	total energy of ball and Earth / ground is constant		
	allow 'a system' for ball and Earth		
	allow energy is conserved	1	
			[8]
(a)	higher	1	
(b)	low(er)	1	
	hot(ter)		
	allow warm(er)	1	
(c)	advantage: • water heated continuously (by the Sun)	1	
	one disadvantage from:		
	• temperature of water is lower (for most of the time than water heated by		
	 waitermersiont beater) enough allow less control over water temperature 		
	it takes longer to heat the water	1	

5.

(d)	4030000 4070000		1
	0.99		
		an answer of 99% scores 2 marks	
		an answer of 99 or 0.99% scores 1 mark	1
		an answer of 0.99 scores 2 marks	
		allow an answer that rounds to 0.99 for 2 marks	
(e)	power = ene	ergy transferred / time allow P = E / t	
			1
(f)	$5000 = \frac{400}{1000}$	70 000	
		t	1
	$t = \frac{407000}{5000}$	00	
	5000		1
	<i>t</i> = 814		
			1
	seconds		
		other units of time must be consistent with numerical value	
		an answer of 814 seconds scores 4 marks	1
		an answer of 13.57 minutes scores 4 marks	
			[12]
(a)	gravitationa	l potential this order only	
			1
	kinetic		1
(1-)			
(b)		gy = 0.5 × mass × speed2	
	or		
	Ek = ½mv2		1

	(c)	5040 = 0.5 × m × 122		
		$m = \frac{5040}{0.5 \times 12^2}$	1	
		m = 70 (kg)	1	
	(d)	the thermal energy increases.	1	[7]
6.	(a)	the polarity (of the supply) does not change allow potential difference in one direction (only)	1	
	(b)	energy transferred = power × time	1	
	(c)	162 000 000 = 7200 × t	1	
		$t = \frac{162\ 000\ 000}{7200}$	1	
		t = 22 500 (s)	1	
	(d)	$V = I \times R$	1	
	(e)	480 = 15 × R	1	
		$R = \frac{480}{15}$	1	
		R = 32 (Ω)	1	
	(f)	time taken using system A is double the time of system B	1	[10]
7.	(a)	nuclei do not accept atoms	1	_ •
		decreases	1	
			-	

(b)	m = 0.004 (kg)	1
	E = 0.004 × 5200 × 50 000 000	
	allow a correct substitution of an incorrectly/not converted value of m	1
	E = 1.04 × 109 (J) or	
	E = 1 040 000 000 (J)	
	allow a correct calculation using an incorrectly/not converted value of m	1
(c)	 any two from: to make sure the fusion process is possible to develop an understanding of the process to make adaptations to the process to assess the efficiency of the process to make predictions assess safety risks to assess environmental impact set-up cost is lower (for small scale experiments) 	2
(d)	releases carbon dioxide allow releases greenhouse gases	1
	which causes global warming allow which causes climate change	
	OR releases particulates which causes global dimming or which cause breathing problems	
	OR releases sulfur dioxide which cause acid rain	
	OR releases nitrogen oxides which cause breathing problems or which causes acid rain	1

[9]

(a)

Level 2: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

Factors

- poor condition of tyres
- poor road surface
- wet or icy road
- poor/worn brakes

Explanation

because of decreased friction

Factors

• increased mass of car/passengers Explanation

- increases kinetic energy of car
- more work needs to be done to stop car
- increases momentum of the car

Factor

- road slopes downhill Explanation
- (a component of) gravity opposes the braking force resultant (braking) force is reduced

allow answers in terms of reducing braking distance throughout

A single factor with no related explanation is insufficient to score a mark

(b)	resultant force = mass × acceleration	1
(c)	7200 = 1600 × a ignore negatives throughout	1
	a = <u>7200</u> 1600	1
	<i>a</i> = 4.5 (m/s2)	1

3-4

1-2

9.

(d)	15 (m) 38 (m)		
(u)		two correct values identified	1	
	= 53 (m)			
		allow the correct addition of a misread braking distance and /or a misread thinking distance taken from the graph		
			1	
(e)	$p = \frac{F}{A}$		1	
(f)	$120\ 000 = \frac{60}{4}$	2		
			1	
	A = <u>60</u> 120 00	0	1	
	<i>A</i> = 0.0005		1	
	A = 5 (.0) × 1	10–4		
		allow an answer given to 2 sig figs from an incorrect calculation using the given data	1	
	m ²		1	
			1	[16]
(a)	the friction is	s decreased	1	
(b)	Ep = 62.5 ×	9.8 × 16.0	1	
	E p = 9800	())		
	Ek = 0.5 × 6	2.5 × 122	1	
(c)			1	
	$E_{L} = 4E_{00} (1)$			
	Ek = 4500 (J		1	

10.

(d) Any two from	า:	
-------------------------	----	--

- speed (at bottom of slide) friction (between sled and ground)
 - allow mass/weight of rider (and sled) allow surface type

air resistance •

2

[7]

(a)	density = $\frac{\text{mass}}{\text{volume}}$	
	or	
	$\rho = \underline{m}$	
	V	1
		-
(b)	008 - ^m	
(b)	$998 = \frac{11}{6500000}$	1
		1
	$m = 998 \times 6500000$	
		1
	$m = 6\ 487\ 000\ 000$	1
		1
	<i>m</i> = 6.487 × 109 (kg)	
	allow a correct conversion of their calculated value of mass into standard	
	form	
		1
(c)	energy transferred = power × time	
(C)	or	
	EPet	
		1
	<i>t</i> = 18 000 (s)	
(d)	or	
	$t = 5 \times 60 \times 60$	
		1
	$E = 1.5 \times 109 \times 18\ 000$	
	allow a correct substitution using an incorrectly/not converted valu	ie of t
		•
	<i>E</i> = 2.7 × 1013 (J)	
	allow a correct calculation using an incorrectly/not converted value	o of t

allow a correct calculation using an incorrectly/not converted value of t

Energy (F)

	(e)	the variation in demand is (much) greater than 1.5 × 109 W allow the increase in demand is greater than the (power) output of the (hydroelectric) power station		
		demand remains high for longer than 5 hours allow 04:00 to 16:00 is 12 hours allow 04:00 to 16:00 is greater than 5 hours	1	
11.	(a)	K = step-up transformer	1	[11]
		L = transmission cables allow power cables		
		ignore wires M = step-down transformer	1	
		allow 1 mark if K and M are labelled transformer but step-up and step-down labels are incorrect or not present	1	
	(b)	8 (%) and 32 (%) both required	1	
		Number of times = 4	1	
	(c)	(burning gas) releases carbon dioxide	1	
		which causes global warming allow greenhouse effect or climate change	1	
	(d)	An energy resource that can be replenished quickly.	1	
	(e)	higher power output allow more electricity generated	1	
		lower variation in power output	1	[10]

12.	(a)	kg allow kilogram	
		°C	1
		allow degrees Celsius	1
	(b)		
			1
	(c)	P = 122 × 15	1
		P = 2160 (W)	1
		T = 2100 (W)	1
	(d)	The heating element in the kettle takes time to heat up	1
	(e)	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	
		Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced 3–4	5–6
		Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	3–4
		No relevant content	1–2
		Indicative content:	0
		indicative content.	
		 measure the mass of water using a balance or measure the volume of water using a measuring cylinder 	
		 measure the initial temperature of the water 	
		pour the water into the kettle	
		 put temperature probe in the water or put a thermometer in the water 	
		put a thermometer in the waterswitch kettle on	
		record temperature	
		measure time with a stopclock	
		use an interval of 5 seconds	

	(f)	ΔΘ = 80 (°C)	1	
		$E = 0.50 \times 4200 \times 80$ allow E = 0.50 × 4200 × their value of $\Delta \Theta$	1	
		E = 168 000 (J) allow an answer consistent with their value of $\Delta \Theta$	1	
	(g)	m = 0.005 (kg)	1	
		E = 0.005 × 2 260 000 this mark may score if m is not/incorrectly converted	1	
		E = 11 300 (J) allow an answer consistent with their value of m	1	
13.	(a)	use a tape measure allow use a metre rule allow use a laser measure		[18]
		one person holding the top and another person holding the bottom or use a set square to ensure tape measure is vertical <i>allow use a plumb-line to ensure tape measure is</i>	1	
		<i>vertical</i> or take repeat readings and calculate a mean	1	
	(b)	Ep = 45 × 9.8 × 2.0 an answer of 880 (J) or 882 (J) scores 2 marks	1	
		Ep = 880 (J)	1	

- (c) any **3** from:
 - change in vertical height
 - mass / weight
 - speed / velocity
 - air resistance or drag
 - allow body position

allow wind

- friction (between zip line and pulley)
- gradient / angle (of the zip wire)
- length of zip wire
 ignore gravitational field strength

(b) charge flow = current × time **or**

$$Q = It$$

- (c) I = 0.050 (A)
 - Q = 0.050 × 14 400 allow a correct substitution using an incorrectly/not converted value of I
 - Q = 720 (C) allow a correct calculation using an incorrectly/not converted value of I
- (d) there is no current in a diode (in the reverse direction)

 or
 charge will not flow through a diode (in the reverse direction)
 allow diode will not conduct (electric charge)
 do not accept the circuit is not complete

(because) a diode has a (very) high resistance (in the reverse direction)

[7]

1

3

1

1

1

1

Page 14 of 25

	(e)	Efficiency = Useful power output Total power input	1
	(f)	$0.75 = \frac{\text{Useful power output}}{0.24}$	1
		Useful power output = 0.75 × 0.24	1
		Useful power output = 0.18 (W)	1 [11]
15.	(a)	carbon dioxide released greenhouse gases is insufficient carbon emissions is insufficient allow CO2	1
		causing global warming allow climate change allow named consequence of global warming allow greenhouse effect	
		air pollution is insufficient OR	
		particulates released (1)	
		causing global dimming (1)	
		OR	
		sulfur dioxide released (1)	
		allow SO2	
		causing acid rain (1)	1
	(b)	any 2 from: do not accept solar	
		 wind tidal wave hydroelectric allow pumped storage hydro is insufficient 	
		• geothermal	
		biofuel allow biomass or named biofuel, eg wood	

rgy (F)			
	(c)		
		an answer of 22 (%) scores 2 marks	
		100 – 78	
		allow 1 mark for calculating percentage of named	
		resources (78%)	1
			1
		22 (%)	1
			-
	(d)		
		an answer of 12 500 (MW) scores 2 marks	
		maximum demand = 37 500 (MW) and	
		minimum demand = 25 000 (MW)	
			1
		difference in demand = 12 500 (MW)	
			1
	(e)	solar panels generate electricity from light	
		solar panels make energy is insufficient	1
			1
		power output would increase throughout the morning or	
		power output would increase (between 06:00 and 09:00)	
		or (between 06:00 and 09:00) the Sun is rising / shining	
			1
			[10]
16	(a)	(the diesel car has a) higher range	
16.	()	allow less frequent refuelling needed	
			1
		(the diesel car) power source has a lower mass	
		allow the power source has a lower weight	
		the diesel car has a lower mass is insufficient	1
	4.5		
	(b)	a correct answer that rounds to 26.0% scores 2 marks	
		a correct answer that rounds to 26 (%) scores 2 marks	
		% of total mass = $\frac{420}{1610}$ (×100)	
		allow 1 mark for an answer of 0.26	1
		% of total mass = 26 (%)	
			1

Energy	(F)
--------	-----

17.

(c) any **2** from:

(C)	any z nom.		
	 increase the range of electric cars increase the time between recharges decrease the (total) mass of the electric car greater acceleration 	2	
(d)	energy transferred = power × time or		
	E = Pt	1	
(e)	an answer of 60 (s) scores 3 marks		
	420 000 = 7000 × t	1	
	t = 420 000 / 7000	1	
	t = 60 (s)	4	
		1	[10]
(a)	To reduce energy transfer to the surroundings	1	
(b)	scald / burn (to skin) ignore risk of electric shock		
		1	
(c)	1 °C	1	
(d)	0.06 kg	1	

18.

(e)

a numerical answer	of 4400 scores 3 marks
--------------------	-------------------------------

	26 400 = 0.20 × c × 30	1	
	$c = \frac{26\ 400}{(0.20 \times 30)}$ or $c = \frac{26\ 400}{6}$	1	
	c = 4400	1	
	J / kg °C	1	[8]
(a)	The energy transferred each second to the bulb.	1	
(b)	power = potential difference × current or		
	P = VI	1	
(c)	an answer of 0.17 (A) scores 3 marks		
	40 = I × 230	1	
	$I = \frac{40}{230}$	1	
	I = 0.17 (A) a correct answer that rounds to 0.17 (A) scores 3 marks	1	
(d)	efficiency = $\frac{\text{useful power output}}{\text{total power input}}$	1	

19.

(e)

an	ancivor	af 27	/1//	scores 3	marks
an	unswer	0 2.7	(VV)	scores 3	THUTKS

	$0.30 = \frac{\text{useful power output}}{9.0}$	1
	useful power output = 0.30 × 9.0	1
	useful power output = 2.7 (W)	1
(f)	bulbs also transfer thermal energy allow light bulbs emit infrared radiation as well as visible light ignore so people know how bright the bulb is	1
	the efficiency of the light bulb also needs to be considered allow the cost to power the light bulb depends on the efficiency allow to see how much energy is wasted	1 [11]
(a)	an answer of 0.50 scores 3 marks allow a correct answer that rounds to 0.50 for 3 marks	
	$41 = \frac{9.8 \times h}{0.12}$	1
	$h = \frac{41 \times 0.12}{9.8}$	1
	h = 0.50 (m)	1
(b)	kinetic energy = 0.5 × mass × (speed)2 or	
	$Ek = \frac{1}{2}mv^2$	1

ſ	c)
ſ	C)

an answer of 60 (kg) scores **3** marks

	270 = ½ × m × 32	1		
	$m = \frac{270}{(\frac{1}{2} \times 3^2)}$ or $m = \frac{270}{4.5}$	1		
	m = 60 (kg)	1		
(d)	Level 2: Scientifically relevant features are identified; the way(s) in which they are similar / different is made clear. Level 1: Relevant features are identified and differences noted.			
	No relevant content	0		
	 Indicative content males have a greater muscle power than females for most of their lives males have a greater muscle power than females above 9/10 years old males have a lower muscle power than females below 9/10 years old 			
	 there is a similar pattern for males and females as age increases males have a peak muscle power at 25 years old whereas females have a peak muscle power at 20/21 years old 			
	 at 9/10 years old males have the same muscle power as females peak muscle power for males (47 W/kg) is greater than peak muscle power for females (37 W/kg) 			
	• the rate of increase of muscle power is greater for males than females			
	(between 5 and 25 years old) Ignore for ments relating to strength Ignore for males than females.			
(e)	 any 1 from: maximum height reached is a better indicator of maximum muscle power allow maximum time in the air for maximum height reached / jumped 			
	 maximum / peak muscle power was being investigated, not mean / average muscle power volunteer may not use maximum effort on the first try 			
	 performance may improve with practice performance may get worse with tiredness 			
	performance may get worse with theuness	1		

[12]

(a)	Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6
	Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.	3-4
	Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1-2
	No relevant content	0
	Indicative content	
	 Wrap N layers of newspaper around the metal can Heated water in a kettle or 	
	Using a Bunsen burner	
	 Put hot water in the metal can • Use a measuring cylinder to measure the volume of water • Measure initial and final temperature with the digital thermometer • Use a stopclock / stopwatch to measure a time of 5 minutes Calculate temperature decrease • Repeat with different number of layers of newspaper • Repeat with no layers of newspaper • Use same initial temperature of hot water • Use same volume of water each time Level 3: Workable method which includes changing the number of layers and includes at least one control variable (same volume of water or same starting temperature) 	
(b)	the digital thermometer and the datalogger have the same resolution allow both measure to 1 d.p. ignore accuracy ignore precision they give the same result is insufficient	1

only need to measure the start and end temperature or only need 2 readings or only need to calculate the temperature change

1

[8]

21.	(a)	chemical 1	
		kinetic 1	
		<i>in this order only</i>	
	(b)	$Ek = 0.5 \times 80 \times 122$	
		Ek = 5760 (J)	
		an answer of 5760 (J) scores 2 marks	
	(c)	$E = 0.040 \times 480 \times 50$ 1	
		E = 960 (J)	
		an answer of 960 (J) scores 2 marks	
	(d)	increased 1	
			[7]
22.	(a)	nucleus 1	
		neutron 1	
		gamma rays	
		in this order only	
	(b)	25000000 2400000	
		1	
		11 an answer of 10.4 with no working scores 1 mark	
		an answer of 11 scores 2 marks	

Energy	(F)
--------	-----

	(c)	any two from:		
		waste is radioactive <i>allow nuclear waste</i>		
		unow nuclear waste		
		waste has a long half-life		
		allow waste remains dangerous for a long time		
		waste is toxic		
		waste needs to be buried <i>allow waste is difficult to dispose of</i>		
		 risk of catastrophic accidents allow named accident e.g. Fukushima, Chernobyl, 		
		Three Mile Island		
		fuel is non-renewable		
			2	
	(d)	similarity:		
		(carbon dioxide concentration and global temperature have) both increased		
		allow they both show a positive correlation	1	
		difference:		
		the carbon dioxide (concentration) continues to increase whereas temperature (increase) levels off		
		allow carbon dioxide (concentration) increases more		
		quickly than temperature (increase)		
			1	[9]
		400.000		
23.	(a)	$P = \frac{120000}{8.0}$		
			1	
		P = 15 000 (W)	1	
		an answer of 15 000 (W) scores 2 marks	1	
	(1)			
	(b)	energy is transferred in heating the surroundings	1	
		friction causes energy to be transferred in non-useful ways		
			1	
	(c)	the switches are in parallel	1	
			I	
		(so) closing either switch completes the circuit	1	
	(പ)	gravitational potential operativ - mass y gravitational field strength y height		
	(d)	gravitational potential energy = mass × gravitational field strength × height		

allow Ep = mgh

(e) $E_p = 280 \times 9.8 \times 14$ $E_p = 38 416$ (j) $E_p = 38 000$ (j) an answer that rounds to 38 000 scores 2 marks an answer of 38 000 scores 3 marks 24. (a) power output increases (to meet demand) due to people returning home from accept many electrical appliances are switched on (which increases demand) accept other sensible suggestions (b) 00.00 accept midnight allow answers between 00.00 and 04.00 (c) any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact 25. (a) 0.1 (°C) (b) power = energy transferred / time allow $E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6 m = 1050 / (4200 × 0.6)	igy (F)				
Ep = 38 000 () an answer that rounds to 38 000 scores 2 marks an answer of 38 000 scores 3 marks 24. (a) power output increases (to meet demand) due to people returning home from accept many electrical appliances are switched on (which increases demand) accept other sensible suggestions (b) 00.00 accept midnight allow answers between 00.00 and 04.00 (c) any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact 25. (a) 0.1 (°C) (b) power = energy transferred / time allow $P = E/t$ allow $P = E/t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6		(e)	$Ep = 280 \times 9.8 \times 14$	1	
an answer that rounds to 38 000 scores 2 marks an answer of 38 000 scores 3 marks24.(a) power output increases (to meet demand) due to people returning home from accept many electrical appliances are switched on (which increases demand) accept other sensible suggestions(b) 00.00 accept midnight allow answers between 00.00 and 04.00(c) any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact25.(a) 0.1 (°C)(b) power = energy transferred / time allow $E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks(d) 1050 = m × 4200 × 0.6			Ep = 38 416 (J)	1	
an answer that rounds to 38 000 scores 2 marks an answer of 38 000 scores 3 marks24.(a) power output increases (to meet demand) due to people returning home from accept many electrical appliances are switched on (which increases demand) accept other sensible suggestions(b) 00.00 accept midnight allow answers between 00.00 and 04.00(c) any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact25.(a) 0.1 (°C)(b) power = energy transferred / time allow $E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks(d) 1050 = m × 4200 × 0.6			Ep = 38 000 (I)		
24.(a) power output increases (to meet demand) due to people returning home from accept many electrical appliances are switched on (which increases demand) accept other sensible suggestions(b) 00.00 accept midnight allow answers between 00.00 and 04.00 (c)any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact25.(a) $0.1 (°C)$ (b)power = energy transferred / time allow $P = E / t$ allow $E = P \times t$ (c) $1050 / 300$ $3.5 (W)$ accept $3.5 (W)$ with no working shown for 2 marks (d)(d) $1050 = m \times 4200 \times 0.6$				1	
Certificationaccept many electrical appliances are switched on (which increases demand) accept other sensible suggestions(b)00.00 accept midnight allow answers between 00.00 and 04.00(c)any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact25.(a)0.1 (°C)(b)power = energy transferred / time allow $P = E / t$ allow $E = P \times t$ (c)1050 / 3003.5 (W) accept 3.5 (W) with no working shown for 2 marks(d)1050 = m × 4200 × 0.6			an answer of 38 000 scores 3 marks	1	
Certificationaccept many electrical appliances are switched on (which increases demand) accept other sensible suggestions(b)00.00 accept midnight allow answers between 00.00 and 04.00(c)any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact25.(a)0.1 (°C)(b)power = energy transferred / time allow $P = E / t$ allow $E = P \times t$ (c)1050 / 3003.5 (W) accept 3.5 (W) with no working shown for 2 marks(d)1050 = m × 4200 × 0.6				[[10]
(b) 00.00 accept midnight allow answers between 00.00 and 04.00 (c) any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact (a) $0.1 (°C)$ (b) power = energy transferred / time allow P = E/t $allow E = P \times t$ (c) $1050 / 300$ 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) $1050 = m \times 4200 \times 0.6$	24.	(a)			ol
$accept midnight$ $allow answers between 00.00 and 04.00$ (c) any two from: conserves fuel reserves spare capacity to compensate for unreliable renewable resources provides spare capacity in case of power station emergency shut-down so as to not make unnecessary environmental impact 25. (a) 0.1 (°C) (b) power = energy transferred / time allow $P = E/t$ allow $E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6 			accept other sensible suggestions	1	
allow answers between 00.00 and 04.00 (c) any two from: • conserves fuel reserves • spare capacity to compensate for unreliable renewable resources • provides spare capacity in case of power station emergency shut-down • so as to not make unnecessary environmental impact 25. (a) 0.1 (°C) (b) power = energy transferred / time $allow P = E / t$ $allow E = P \times t$ (c) 1050 / 300 3.5 (W) $accept 3.5 (W) with no working shown for 2 marks$ (d) 1050 = m × 4200 × 0.6		(b)	00.00		
(c) any two from: \cdot conserves fuel reserves \cdot spare capacity to compensate for unreliable renewable resources \cdot provides spare capacity in case of power station emergency shut-down \cdot so as to not make unnecessary environmental impact 25. (a) $0.1 (°C)$ (b) power = energy transferred / time $allow E = P \times t$ (c) $1050 / 300$ $3.5 (W)$ $accept 3.5 (W) with no working shown for 2 marks(d) 1050 = m \times 4200 \times 0.6$			accept midnight	1	
$ext{conserves fuel reserves}$ $for unreliable renewable resources$ $for unreliable $			allow answers between 00.00 and 04.00		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		(c)	any two from:		
(b) power = energy transferred / time allow P = E / t $allow E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6			 spare capacity to compensate for unreliable renewable resources provides spare capacity in case of power station emergency shut-down 	2	[4]
(b) power = energy transferred / time allow P = E / t $allow E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6	25	(a)	0.1 (°C)		
allow $P = E / t$ allow $E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6	25.			1	
allow $E = P \times t$ (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6		(b)			
 (c) 1050 / 300 3.5 (W) accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6 				1	
3.5 (W) <i>accept 3.5 (W) with no working shown for</i> 2 <i>marks</i> (d) 1050 = m × 4200 × 0.6		(c)			
accept 3.5 (W) with no working shown for 2 marks (d) 1050 = m × 4200 × 0.6		(C)		1	
(d) 1050 = m × 4200 × 0.6			3.5 (W)	1	
			accept 3.5 (W) with no working shown for 2 marks		
m = 1050 / (4200 × 0.6)		(d)	1050 = m × 4200 × 0.6	1	
			$m = 1050 / (4200 \times 0.6)$	•	
				1	

m = 0.417 (kg)

accept 0.417 (kg) with no working shown for **3** marks

- (e) any **one** from:
 - energy used to heat metal pan (as well as the water)
 - energy transfer to the surroundings (through the insulation)
 - angle of solar radiation will have changed during investigation
 - intensity of solar radiation may have varied during investigation

[8]