Mark schemes

1. (a) $I=0.08$ (A)
an incorrect value of I from the graph can score all subsequent marks

$$
\begin{aligned}
0.230=0.08 & \times \mathrm{V} \\
& \text { allow a correct substitution of an incorrectly/not } \\
& \text { converted value of } P
\end{aligned}
$$

$V=\frac{0.230}{0.08}$
allow a correct rearrangement using an incorrectly/not converted value of P
$\mathrm{V}=2.875(\mathrm{~V})$
OR
$\mathrm{I}=0.08(\mathrm{~A})(1)$
$\mathrm{V}=0.08 \times 36(2)$
$\mathrm{V}=2.88(\mathrm{~V})(1)$
OR
$0.230=12 \times 36(1)$
$\mathrm{I}=0.08(\mathrm{~A})(1)$
$V=0.08 \times 36(1)$
$\mathrm{V}=2.88(\mathrm{~V})(1)$
allow a correct calculation using an incorrectly/not converted value of P
(b) the product of current and resistance = a constant
calculation of constant (2.88) using three or more pairs of values if no other marks scored allow for one mark a statement that doubling one quantity (R or I) halves the other quantity
(c) current would be (almost) zero (in the variable resistor)
(because) the switch has (effectively) zero resistance
or
the potential difference across the variable resistor is (effectively) zero the switch's resistance is much lower than the variable resistor allow the switch creates a short circuit
2. (a) (very high p.d. means) very low currents
which means less (thermal) energy is transferred to surroundings allow less power loss in cables
which increases the efficiency of power transmission
(b) electric field strength is very high
causing the air to become ionised
allow the air breaks down
allow the air becomes a conductor
allow the air conducts charge
(the kite / string) conducts charge to the person / earth ignore answers referring to the kite touching the power cables
(c) straight line passing through the origin
line drawn below existing line for all values
(d) the potential difference across the wires/cable is the same
(but) the resistance of the steel wire is greater (and so less current in the steel)

Electronics (H)

3. (a) potential difference
allow p.d.
allow voltage
temperature
in this order only
(b) the current increases (when the potential difference increases)
(which) causes the temperature of the filament to increase
(so) the resistance increases
do not accept resistance increases and then levels off
(c) a higher proportion / percentage of the (total) power / energy input is usefully transferred wastes less energy is insufficient
or
higher (useful) power / energy output for the same (total) power / energy input
(e) $1000(\Omega)$

$$
\text { reason only scores if } R=1000(\Omega)
$$

(f) $12=\mathrm{I} \times 7000$

$$
I=\frac{12}{7000}
$$

$$
I=1.71 \times 10-3(A)
$$

an answer that rounds to $1.7 \times 10-3$ (A) scores 3 marks

$$
\mathrm{I}=1.7 \times 10-3(\mathrm{~A})
$$

this answer only
or
$\mathrm{I}=0.0017$ (A)
an answer of $2.4 \times 10-3$ (A) scores 2 marks
if no other marks scored allow 1 mark for calculation of total resistance (7000 Ω)
an answer of $1.7 \times 10-3$ (A) scores 4 marks
4. (a) 50

Hz / hertz
allow Hertz
(b) (both) switches need to be closed / on
to complete the series circuit
or
to allow charge to flow
or
so there is a current in the circuit
(c)
an answer of 7.5 (A) scores $\mathbf{3}$ marks
an answer of $0.237(A)$ scores 2 marks
$1800=12 \times 32$
this mark may be awarded if P is incorrectly or not converted
$1^{2}=\frac{1800}{32}$
or
$12=56.25$
this mark may be awarded if P is incorrectly or not converted
$\mathrm{I}=7.5(\mathrm{~A})$
this answer only
1

1
(d)

> an answer of 300 (s) scores 3 marks
> an answer of 300000 (s) scores 2 marks
> $1500=\frac{450000}{\mathrm{t}}$
> this mark may be awarded if P is incorrectly or not converted
> $t=\frac{450000}{1500}$
> this mark may be awarded if P is incorrectly or not converted
> $\mathrm{t}=300$ (s)
> this answer only
5. (a) risk of electric shock (if someone touched the case)
allow risk of electrocution (if someone touched the case)
(b) $2530=\mathrm{I} \times 230$
this mark may be awarded if P is incorrectly / not converted

$$
I=\frac{2530}{230}
$$

this mark may be awarded if P is incorrectly / not converted

$$
\mathrm{I}=11 \text { (A) }
$$

this answer only
an answer of 0.011 (A) scores 2 marks
an answer of 11 (A) scores $\mathbf{3}$ marks
(c) $\mathrm{E}=2530 \times 14$ this mark may be awarded if P is incorrectly / not converted

$$
\begin{aligned}
& \mathrm{E}=35420(\mathrm{~J}) \\
& \text { this answer only }
\end{aligned}
$$

$\mathrm{m}=0.12(\mathrm{~kg})$
allow an answer that is consistent with their calculated value of E

$$
35420=m \times 4200 \times 70
$$

$$
\text { allow their calculated } E=m \times 4200 \times 70
$$

$$
m=\frac{35420}{4200 \times 70}
$$

allow $m=\frac{\text { their calculated } E}{4200 \times 70}$
6. (a) non-contact (force) allow electrostatic (force)
attraction (between hair and balloon) allow repulsion between the hairs on the head
(b)
an answer of $2.0 \times 10-6$ (C) scores 3 marks
an answer of $2 \times 10-3(C)$ scores 2 marks
$0.0050=\mathrm{Q} \times 2500$
this mark may be awarded if pd is incorrectly or not converted
(c)
$Q=\frac{0.0050}{2500}$
this mark may be awarded if pd is incorrectly or not converted
$Q=2.0 \times 10-6(C)$
or
Q = 0.0000020 (C)
these answers only
an answer of $120(\Omega)$ scores 5 marks
$0.16=1 \times 4.0 \times 10-3$
or
$\mathrm{I}=\frac{0.16}{4.0 \times 10^{-3}}$
this mark may be awarded if time is incorrectly / not converted
$\mathrm{I}=40(\mathrm{~A})$
this value only
$4800=40 \times R$
allow $4800=$ their calculated $I \times R$
$R=\frac{4800}{40}$
allow $R=4800 /$ their calculated $/$
$R=120(\Omega)$
allow an answer consistent with their calculated I

$R=120(\Omega)$
allow an answer consistent with their calculated I
7. (a) $15.7=\frac{15.8+15.3+X}{3}$

$$
\mathbf{X}=16.0(\Omega)
$$

(b) precise results show little variation
the 4th result was further away from the mean than the other values allow the range of values has increased ignore the 4th result was an anomaly
(c) two pairs of values of n and R showing that $n \times R=$ constant
e.g. $2 \times 24=48,3 \times 16=48$
$4 \times 12=48,5 \times 9.5=47.5$
$6 \times 8=48$
third pair of values of n and R showing that $n \times R=$ constant
(so) $n \times R=$ constant (showing the student was correct)
allow 1 mark each for two statements relating the change in number of resistors to the change in (mean total) resistance
allow 1 mark for use of data from graph to confirm at least one statement
(d) multiple paths for charge / electrons to flow
allow current for charge
total current is greater (for the same potential difference when more resistors are added)
8. (a) $\%$ increase $=\frac{(10000-3200)}{3200} \times 100$

1

1
(b) Any two from:

- no sulfur dioxide released
- doesn't cause acid rain
- no particulates released
- doesn't cause global dimming
- less carbon dioxide released (per kg of fuel burned)
- less global warming allow less climate change allow less greenhouse gases
- no solid waste
- gas mining is less destructive than coal mining ignore less air pollution
(c) mean sea surface temperature shows a (steady) increase
over the time period on the graph conditional on scoring 1st marking point allow between a correct pair of dates at least 10 years apart

or

from $16.45\left({ }^{\circ} \mathrm{C}\right)$ to $16.96\left({ }^{\circ} \mathrm{C}\right)$ allow a correct pair of temperatures at least 10 years apart
(d) thermistor C
(because) the change in resistance is greatest conditional on scoring 1st marking point allow the gradient is highest allow more sensitive to temperature change
between 0 and $25^{\circ} \mathrm{C}$
conditional on scoring 2nd marking point
allow between 16 and $17{ }^{\circ} \mathrm{C}$
if thermistor C is not chosen, allow for 1 mark each:
not thermistor A because there is no/little change in resistance not thermistor B as there is only a small change in resistance not thermistor D as there is no data available between 0 and $40^{\circ} \mathrm{C}$
9.
(a) $5.75=\mathrm{I} \times 230$
$I=\frac{5.75}{230}$
$\mathrm{I}=0.025(\mathrm{~A})$
$230=0.025 \times R$
or

$$
\mathrm{R}=\frac{230}{0.025}
$$

allow a correct substitution using an incorrect value of I
or
allow a correct rearrangement using incorrect value of I
$R=9200(\Omega)$
allow a correct calculation of resistance using an incorrect value of I alternative approach for 4th and 5th marks:
$5.75=0.0252 \times R(1)$
or
$R=\frac{5.75}{0.025^{2}}$
$R=9200(\Omega)(1)$
alternative approach:
$5.75=\frac{230^{2}}{\mathrm{R}}$ (3)
$R=9200(\Omega)(1)$
(b) one wire in the switch is live
allow the switch / circuit is live allow one wire is at a potential of 230 V
the electrician is earthed
or
the electrician is at earth potential
(so) there will be a (large) potential difference between the live wire and the electrician / earth (if the electrician touched the wire)
(c) 50 Hz has the lowest (maximum) let-go current
a higher / lower / different frequency would allow people to let go at a greater current allow a specific numerical example as opposed to a trend

