Mark schemes

1. (a) A: transmission / power cables allow transmission / power lines allow cables ignore wires

B: step-down transformer
(b) less thermal energy is transferred to the surroundings.
(c) charge flow $=\frac{500000000}{25000}$

$$
\text { charge flow = } 20000 \text { (C) }
$$

(d) total current $=7.20$ (A)

$$
P=230 \times 7.20
$$

allow a correct substitution of an incorrect total current

$$
\text { P = } 1656 \text { (W) }
$$

allow a correct calculation using an incorrect total current
(e) dishwasher
has the largest current
or
has the largest power (input)
(f) $E=600 \times 32000000$
$E=19200000000(J)$
or
$\mathrm{E}=1.92 \times 1010$ (J)
2. (a) increased
decreased
stayed the same
(b) random error

$$
P=0.216(W)
$$

3. (a) ammeter and voltmeter symbols correct
voltmeter in parallel with wire
ammeter in series with wire
(b) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- length measured length varied
- current measured
- potential difference measured
- repeat readings
- calculate resistance for each length
- resistance $=\frac{\text { potential difference }}{\text { current }}$
- plot a graph of resistance against length
- hazard: high current
- may cause wire to melt / overheat
- may cause burns (to skin)
- use low currents
(c) the temperature of the wire would not change

4. (a) $\mathrm{P}=\frac{120000}{8.0}$

$$
P=15000(W)
$$

an answer of 15000 (W) scores 2 marks
(b) energy is transferred in heating the surroundings
friction causes energy to be transferred in non-useful ways
(c) the switches are in parallel
(so) closing either switch completes the circuit
(d) gravitational potential energy $=$ mass \times gravitational field strength \times height allow $E p=m g h$
(e) $E p=280 \times 9.8 \times 14$

$$
\text { Ep = } 38416(J)
$$

$$
\mathrm{Ep}=38000(\mathrm{~J})
$$

an answer that rounds to 38000 scores $\mathbf{2}$ marks
an answer of 38000 scores $\mathbf{3}$ marks
[10]
5. (a) transfer of electrons mention of positive charge moving negates both marks
from the carpet to the student
(b) three arrows perpendicular to sphere's surface with all arrows directed inwards and distributed evenly around sphere
(c) there is a potential difference between the student and the tap do not accept the tap / sink is charged
which causes electrons / charges to transfer from the student
or
which causes electrons / charges to transfer to the tap
which earths the charge
allow the tap is earthed
(d) carpet / copper has a low resistance
allow carpet is a conductor
or
copper is a conductor
lower / no build-up of charge (on the student)
or
(so there is a) smaller / no potential difference between student and tap / earth
6. (a) (fixed) solar cells aren't always pointed (directly) at the Sun
or
(fixed) solar cells don't track the Sun (through the sky)
(fixed) solar cells don't (always) receive maximum intensity of solar radiation allow solar cells won't receive as much (solar) energy allow solar cells won't generate as much electricity
(b) $\mathrm{Q}=3.5 \times 3600$

$$
Q=12600 \text { (C) }
$$

(d)
$0.16=\frac{\text { useful power output }}{7500}$
useful power output =
0.16×7500
useful power output = $1200(\mathrm{~W})$
(e) the energy becomes less useful
(f) a very large area would need to be covered with solar cells
7. (a) the polarity (of the supply) does not change allow potential difference in one direction (only)
(b) energy transferred $=$ power \times time
(c) $162000000=7200 \times t$

$$
\mathrm{t}=\frac{162000000}{7200}
$$

$$
t=22500(\mathrm{~s})
$$

1
(f) time taken using system \mathbf{A} is double the time of system \mathbf{B}

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- measure the current in \mathbf{R} using the ammeter
- measure the p.d. across \mathbf{R} using the voltmeter
- vary the resistance of the variable resistor (or vary the number of cells or use a variable power supply)
- record a range of values of current and p.d.
- ensure current is low to avoid temperature increase
- switch circuit off between readings
- reverse connection of \mathbf{R} to power supply
- repeat measurements of I and V in negative direction
- plot a graph of current against p.d.
(b) current and p.d. would not be directly proportional or I-V graph would not be straight
or
I-V graph would be curved
(because) resistance of \mathbf{R} would increase
(c) $0.2(\mathrm{~A})$
(d) any one from:
- less chance of misreading
- no parallax error allow position of eye(s) does not affect reading
- it can give a reading closer to the true value allow 'it is more accurate'
ignore 'no human error' ignore 'easier to read'

9. (a) $\mathrm{K}=$ step-up transformer
$\mathrm{L}=$ transmission cables
allow power cables
ignore wires
1
$M=$ step-down transformer
allow 1 mark if K and M are labelled transformer but step-up and step-down labels $\overline{\text { are incorrect or not present }}$
(b) 8 (\%) and 32 (\%)
both required

Number of times $=4$
(c) (burning gas) releases carbon dioxide
which causes global warming
allow greenhouse effect or climate change
(d) An energy resource that can be replenished quickly.
(e) higher power output
lower variation in power output
10. (a) M
(b)

or

(c)

$$
\begin{aligned}
& \quad \text { an answer of } 0.8(\mathrm{~A}) \text { scores } 2 \text { marks } \\
& \text { current }=\frac{24}{30} \\
& \text { current }=0.80(\mathrm{~A})
\end{aligned}
$$

(d)

an answer of 216 (J) scores 2 marks

$E=60 \times 3.6$
$E=216(J)$
(e) The reading in \mathbf{Y} would be lower
(f) The total resistance of \mathbf{Y} is greater
(g) potential difference $=$ current \times resistance
or
$V=I R$
(h)

$$
\begin{aligned}
& \text { an answer of } 4.5(\Omega) \text { scores } \mathbf{3} \text { marks } \\
& 3.6=0.80 \times \mathrm{R} \\
& \mathrm{R}=\frac{3.6}{0.80} \\
& \mathrm{R}=4.5(\Omega)
\end{aligned}
$$

11. (a) A

1
(b) C
(c) repels
increases
in this order only
(d) another scientist repeats the experiment and gets the same results
12. (a) The energy transferred each second to the bulb.

1
(b) power $=$ potential difference \times current

$$
P=V I
$$

(c)

$$
\text { an answer of } 0.17(A) \text { scores } 3 \text { marks }
$$

$40=I \times 230$
$I=\frac{40}{230}$
$\mathrm{I}=0.17$ (A)
(d)

$$
\text { efficiency }=\frac{\text { useful power output }}{\text { total power input }}
$$

(e)

$$
\begin{aligned}
& \text { an answer of } 2.7(\mathrm{~W}) \text { scores } 3 \text { marks } \\
& 0.30=\frac{\text { useful power output }}{9.0} \\
& \text { useful power output }=0.30 \times 9.0 \\
& \text { useful power output }=2.7(\mathrm{~W})
\end{aligned}
$$

(f) bulbs also transfer thermal energy
allow light bulbs emit infrared radiation as well as visible light
ignore so people know how bright the bulb is
the efficiency of the light bulb also needs to be considered
allow the cost to power the light bulb depends on the efficiency
allow to see how much energy is wasted
13. (a)

(b) charge flow $=$ current \times time

$$
Q=I t
$$

(c) $\mathrm{I}=0.050(\mathrm{~A})$
$Q=0.050 \times 14400$ allow a correct substitution using an incorrectly/not converted value of I
$\mathrm{Q}=720$ (C) allow a correct calculation using an incorrectly/not converted value of I
(d) there is no current in a diode (in the reverse direction)
or
charge will not flow through a diode (in the reverse direction)
allow diode will not conduct (electric charge)
do not accept the circuit is not complete
1
(because) a diode has a (very) high resistance (in the reverse direction)
(e) Efficiency $=\frac{\text { Useful power output }}{\text { Total power input }}$
(f) $0.75=\frac{\text { Useful power output }}{0.24}$

Useful power output $=0.75 \times 0.24$

Useful power output $=0.18(\mathrm{~W})$
14. (a) density $=\frac{\text { mass }}{\text { volume }}$
or
$\rho=\frac{m}{V}$
(b) $998=\frac{\mathrm{m}}{6500000}$
$m=998 \times 6500000$
$m=6487000000$
$m=6.487 \times 109(\mathrm{~kg})$
allow a correct conversion of their calculated value of mass into standard form
(d) $t=18000(\mathrm{~s})$
or
$t=5 \times 60 \times 60$
$E=1.5 \times 109 \times 18000$ allow a correct substitution using an incorrectly/not converted value of t
$E=2.7 \times 1013$ (J)
allow a correct calculation using an incorrectly/not converted value of t
1
(e) the variation in demand is (much) greater than $1.5 \times 109 \mathrm{~W}$
allow the increase in demand is greater than the (power) output of the (hydroelectric) power station
demand remains high for longer than 5 hours
allow 04:00 to 16:00 is 12 hours
allow 04:00 to 16:00 is greater than 5 hours
15. (a) ammeter and voltmeter symbols correct
ammeter in series with lamp
(b) smooth curved line of correct shape

```
passing through - 4.0 V, - 0.2 A
or
\(-6.0 \mathrm{~V},-0.23 \mathrm{~A}\)
```


(c) potential difference $=$ current \times resistance

$$
V=I R
$$

(d) $\mathrm{I}=0.08(\mathrm{~A})$
$1.0=0.08 \times R$
allow $1.0=$ their $I \times R$ provided their I has been obtained from the graph
$R=\frac{1.0}{0.08}$

$$
\text { allow } R=\frac{1.0}{\text { their } I}
$$

$$
R=12.5(\Omega)
$$

(e) ammeter displays a reading when not connected (to a circuit)
16. (a) kg
allow kilogram
${ }^{\circ} \mathrm{C}$
allow degrees Celsius
(b)

(c) $\mathrm{P}=12^{2} \times 15$

$$
P=2160(W)
$$

(d) The heating element in the kettle takes time to heat up
(e) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced 3-4

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content:

- measure the mass of water using a balance

or

measure the volume of water using a measuring cylinder

- measure the initial temperature of the water
- pour the water into the kettle
- put temperature probe in the water
or
put a thermometer in the water
- switch kettle on
- record temperature
- measure time with a stopclock
- use an interval of 5 seconds
(f) $\Delta \Theta=80\left({ }^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& E=0.50 \times 4200 \times 80 \\
& \quad \text { allow } E=0.50 \times 4200 \times \text { their value of } \Delta \theta
\end{aligned}
$$

$E=168000(J)$
(g) $\mathrm{m}=0.005(\mathrm{~kg})$

$$
E=0.005 \times 2260000
$$

this mark may score if m is not/incorrectly converted

$$
\text { E = } 11300 \text { (J) }
$$

allow an answer consistent with their value of m
17. (a) $R=\frac{36.0}{3}$

$$
R=12.0(\Omega)
$$

1

1

1

1

1
(e) $84(\Omega)$

$$
\text { allow an answer between } 83 \text { and } 85(\Omega) \text { inclusive }
$$

(f) decreases decreases
(d) $\mathrm{E}=180 \times 230$

$$
E=41400(J)
$$

(e) Hazard:
live wire
or
high potential difference ignore current in his body

Risk:
electric shock
or
electrocution
allow (electrical) burn
allow death (by electric shock)
allow 1 mark for hazard and risk in incorrect order
[8]
19. (a) 0.08 (s)
(b) the current goes higher than normal value allow the current goes (too) high
or
the current goes higher than 1.5 A
an answer of 36 (W) scores 2 marks
(d) LED lamps waste a smaller proportion of the input energy than filament lamps
,
(c) $P=1.5 \times 24$

P = $36(W)$
20. (a) correct circuit symbol

3 cells joined in series in correct orientation
e.g.

ignore absence of + symbol
(b) $\mathrm{R}=\frac{12}{1.6}$

$$
R=7.5(\Omega)
$$

an answer of $7.5(\Omega)$ scores 2 marks
(c) $4.0(\Omega)$
allow their answer to part (b) - 3.5 correctly calculated
(d) it decreases
the current would be higher (for the same p.d.)
reason only scores if correct box is chosen
or
more than one path for charge to flow
allow current for charge
or
total resistance is always less than the smallest individual resistance
21. (a) \square
(b) $\mathrm{E}=13 \times 230$

$$
\mathrm{E}=2990(\mathrm{~J})
$$

an answer 2990 (J) scores 2 marks
(c) charge flow $=$ current \times time

$$
\text { allow } Q=I t
$$

(d) $\quad 1.52=\mathrm{I} \times 0.40$
$I=\frac{1.52}{0.40}$
$\mathrm{I}=3.8(\mathrm{~A})$
an answer of 3.8 (A) scores $\mathbf{3}$ marks
(e) $E=0.00175 \times 205000$

$$
\text { E = } 359 \text { (J) }
$$

allow an answer that rounds to 360 (J) for 2 marks
an answer of 359 (J) scores 2 marks

