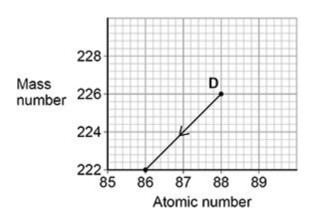
Questions are for both separate science and combined science students unless indicated in the question


1.	Ator	ms of different elements have different prop	erties.	
	(a)	Which of the following is the same for all atoms o	f the same element?	
		Tick (_V) one box.		
		Atomic number		
		Mass number		
		Neutron number		
				(1)
	(b)	Which of the following is different for isotopes of	the same element?	
		Tick (_v) one box.		
		Number of electrons		
		Number of neutrons		
		Number of protons		

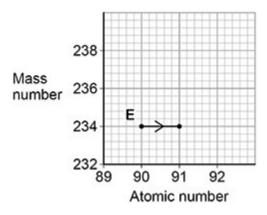
(c) A nucleus emits radiation.

Figure 1 shows how the mass number and the atomic number change.

The nucleus is labelled **D**.

Figure 1

Which type of radiation is emitted when nucleus D decays?

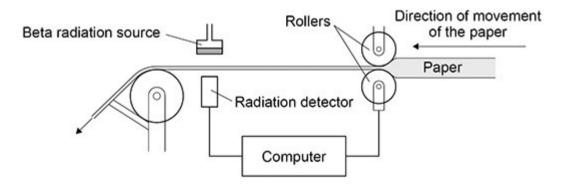

Tick (/) one box.

Alpha	8	20
Beta		20
Neutron		2

(d) Nucleus E also emits radiation.

Figure 2 shows how the mass number and the atomic number change for nucleus E.

Which type of radiation is emitted when nucleus E decays?


Tick (/) one box.

Alpha	
Beta	
Neutron	

Beta radiation can be used to monitor the thickness of paper during production.

Figure 3 shows how the radiation is used.

Figure 3

The computer uses information from the radiation detector to change the size of the gap between the rollers.

2.

(e)

Complete the sentences.

decrease	stay the same	increase
The thickness of the par	per between the beta sou	rce and the detector increase
The reading on the dete	ctor will	
This is because the amo	unt of radiation absorbed	d by the paper will
All radioactive elements ha	ve a half-life.	
What is meant by 'half-li	fe'?	
Tick (√) one box.		
The time it takes for all half.	the nuclei in a radioactive	e sample to split in
The time it takes for the	e count rate of a radioacti	ve sample to halve.
The time it takes for the	e radiation to travel half o	f its range in air.
Why should the radiation so	ource used in Figure 3 have	e a long half-life?
Tick (_v) one box.		
So the activity of the so constant.	urce is approximately	
So the amount of radia	tion decreases quickly.	
So the radiation has a lo	ong range in air.	

Energy from the Sun is released by nuclear fusion.

a)	Complete the sentences. (separate only)		
	Nuclear fusion is the joining together of		
	During nuclear fusion the total mass of the particles		
			(2)
၁)	Nuclear fusion of deuterium is difficult to achieve on Earth because of the high needed. Electricity is used to increase the temperature of 4.0 g of control of the highest statement of 4.0 g of control of 4.0 g of control of the highest statement of 4.0 g of control of 4.0 g of 6.0 g	leuterium by	
	50 000 000 °C. specific heat capacity of deuterium = 5200 J/kg °C (Calculate the	
	energy needed to increase the temperature of the deuterium by 50 °C.	000 000	
	Use the Physics Equations Sheet.		
	Energy =	J	
			(3)
)	The idea of obtaining power from nuclear fusion was investigated using mode. The models were tested before starting to build the first commercia station.		n power
	Suggest two reasons why models were tested.		
	(separate only)		
	1		
	2		
			(2)

Atomic Structure (F) Generating electricity using nuclear fusion will have fewer environmental effects (d) than generating electricity using fossil fuels. Explain one environmental effect of generating electricity using fossil fuels. (2) (Total 9 marks) Radioactive waste from nuclear power stations is a man-made source of background radiation. 3. (a) Which of the following is also a man-made source of background radiation? Tick (_V) one box. (separate only) cosmic rays radiotherapy rocks stars (1) (b) Nuclear power stations use the process of nuclear fission. Complete the sentences to describe the process of nuclear fission. Choose answers from the boxseparate only) an electron a neutron a proton

energy

cosmic rays

x-rays

gamma

rays

Atomic Structure (F)

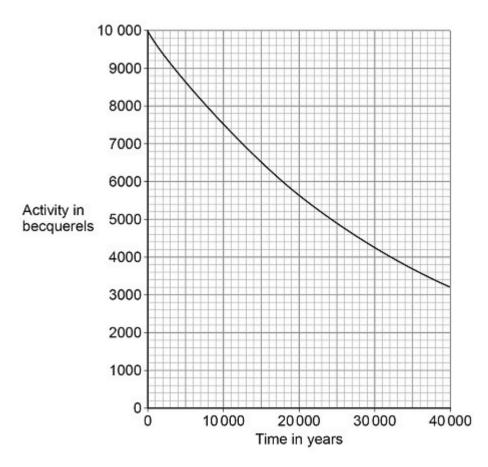
An unstable nucleus absorbs	_ and splits into two parts.
Two or three neutrons are released, as well a	as
and	

(3)

(c) Plutonium-239 is one type of radioactive waste from nuclear power stations.

The following nuclear equation represents the decay of plutonium-239 (Pu-239).

$$^{239}_{94}$$
Pu $\rightarrow \,\,^{235}_{92}$ U + $^{4}_{2}$ He


How does the nuclear equation show that alpha radiation is emitted when plutonium-239 decays?

Tick (/) one box.

An alpha particle contains 92 protons.	
An alpha particle has a mass number of 235.	
An alpha particle is the same as a helium nucleus.	8 2

(1)

The graph below shows how the activity of a sample of plutonium-239 varies with time.

(d)	How much time will it take for the activity of the sample of plutonium-239 to initial activity?	fall to half of its	
	Time =	_ years	(1)
(e)	What is the half-life of plutonium-239?		(.,
	Half-life =	_ years	(1)
(f)	The radioactive waste from a nuclear power station is buried underground.		()
	People are warned to stay away from places where radioactive	waste is	
	buried. Suggest one risk of going near the place where radioactiv	e waste	
	is	buried.	
			(1)

(a) Which is the correct decay equation for polonium-210?

Tick (_) one box.

$$^{210}_{84}$$
Po $\rightarrow ^{214}_{86}$ X + $^{4}_{2}$ He

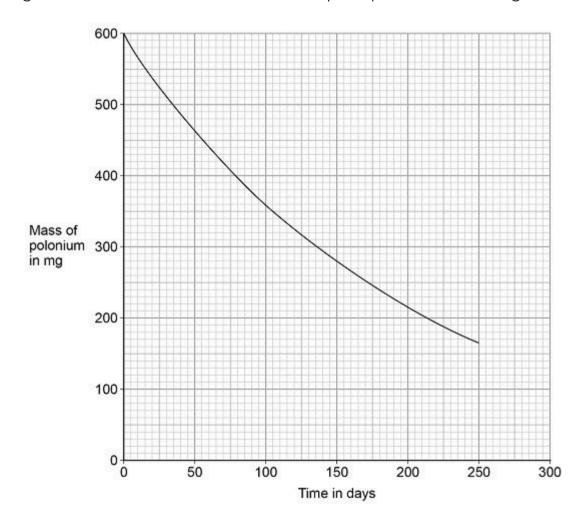
$$^{210}_{84}$$
Po $\rightarrow ^{206}_{86}$ X + $^{4}_{2}$ He

$$^{210}_{84}$$
Po $\rightarrow ^{206}_{82}$ X + $^{4}_{2}$ He

(1)

(Total 8 marks)

(b) Why is alpha radiation dangerous inside the human body?


e bo	Χ.
•	e bo

Alpha radiation is electromagnetic radiation.

Alpha radiation is highly ionising.

Alpha radiation is very penetrating.

The figure below shows how the mass of a sample of polonium-210 changes with time.

Atomic Structure (F) Determine the change in mass of the sample of polonium-210 between 50 and 150 days. (c) Change in mass = _____ mg (2) (d) Estimate the mass of polonium-210 remaining after 300 days. Mass = _____ mg (1) (e) Nuclear radiation can cause ionisation. Complete the sentences. Choose answers from the box. a negative an electron a neutron a positive a proton a zero An atom becomes an ion when it loses _____ The resulting ion has _____ charge.

(2)

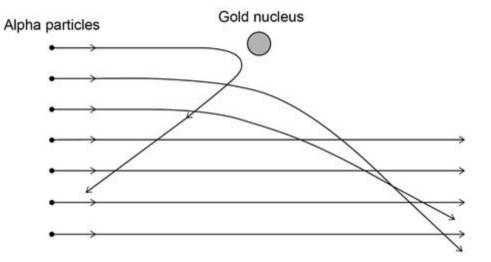
(Total 7 marks)

Atomic Structure (F))
Atomic Structure		,

	_
5.	

The ancient Greeks thought that atoms were tiny spheres that could not be divided into anything smaller.

Since then, different discoveries have led to the model of the atom changing.


Some of the discoveries are given in the table below.

The mass of an atom is concentrated in the nucleus.	А
Electrons orbit the nucleus at specific distances.	В
The nucleus contains neutrons.	С
The nucleus contains positively charged protons.	D

	The nucleus conta	ins positively cha	arged protons.	D	
(a)	Which discovery was t	he earliest?			
	Tick (_V) one box.				
	Α	В	c	D	(1)
(b)	Which discovery was to Tick (v) one box.	he most recent?			
	А	В	С	D	

(c) The alpha particle scattering experiment led to the nuclear model of the atom.

The figure below shows the paths of alpha particles travelling close to a gold nucleus.

Complete the sentences.

Choose answers from the box.

Each answer may be used once, more than once or not at all.

attracts	decreases	does not change
increases	reflects	repels

Alpha particles and gold nuclei are both positively charged.

The gold nucleus ______ the alpha particles.

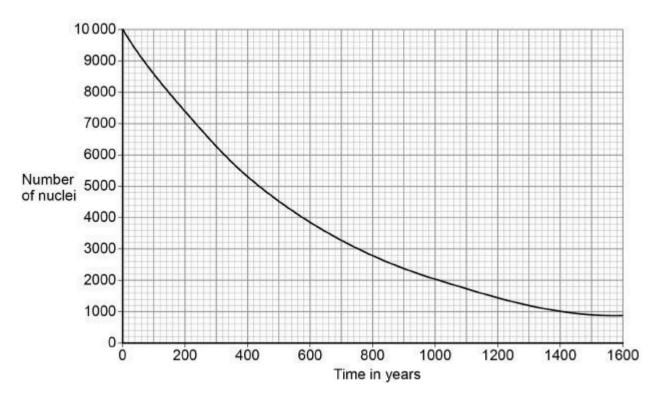
As the alpha particle approaches the gold nucleus, the electric field strength experienced by the alpha particle ______.

As an alpha particle approaches the gold nucleus, the force experienced by the alpha particle ______.

(3)

(d)	The results of the alpha particle scattering experiment were reproducible.	
	What does reproducible mean?	
	Tick (∕) one box.	
	Another scientist repeats the experiment and gets the same results.	
	Another scientist repeats the experiment and gets different results.	
	The same scientist repeats the experiment and gets the same results.	
	The same scientist repeats the experiment and gets different results.	
		(1)

(1) (Total 6 marks)


- 6. Americium-24(1²⁴¹₉₅Am) is an isotope of americium.
 - (a) Which of the isotopes given in the table below is not an isotope of americium?

Isotop	Mass number	Atomic number
еАВ	243	95
С	243	94
	242	95

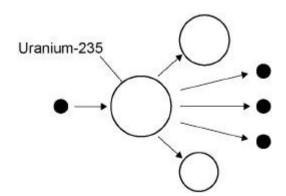
Isotope	
Give a reason for your answer.	

(2)

The graph below shows how the number of americium-241 nuclei in a sample changes with time.

How many years does it take for the number of americium-241 nuclei to decrease from 10 (b) 000 to 5000?

(1)


What is the half-life of americium-241?

(Total 4 marks)

Nuclear power can be used to generate electricity through nuclear fission. 7.

Figure 1 shows the process of nuclear fission.

Figure 1

(a) Complete the sentences.

Choose answers from the box. (separate only)

	gamma rays	light rays	proton	neutron	nucleus	X-rays
	During the proces	ss of nuclear fiss	sion, a uraniu	m		
	absorbs a	·				
	Electromagnetic r	adiation is relea	ased in the fo	rm of	·	(3
,	The UK needs at leas	st 25 000 000 kW	of electrical p	ower at any time	9.	`
	A nuclear power s	station has an	electrical pov	ver output of	2 400 000 kW	/
	Calculate how ma	ny nuclear pov	ver stations a	re needed to	provide 25 000)
	000 kW of electrical power.					
٠						
	N	umber of nucle	ar power sta	tions -		
	IV	difficer of flucie	ear power sta	.ioris –		— (2
	State two environr stations.	mental issues c	aused by ger	nerating electr	icity using nuc	lear power
•	1					
	2					
						(2

(d) The UK currently generates a lot of electricity by burning natural gas. This process releases carbon dioxide into the atmosphere.

Figure 2 shows how the concentration of carbon dioxide in the atmosphere has changed over the past 115 years.

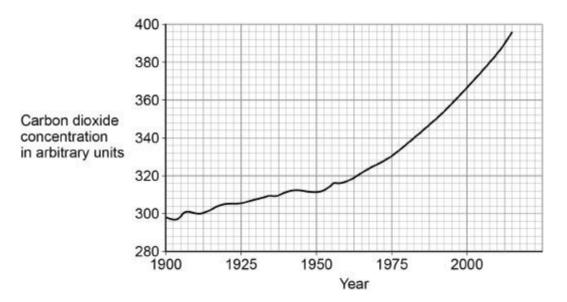
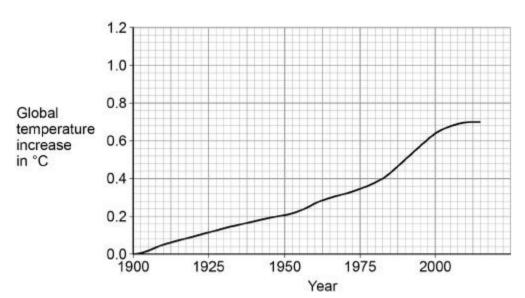



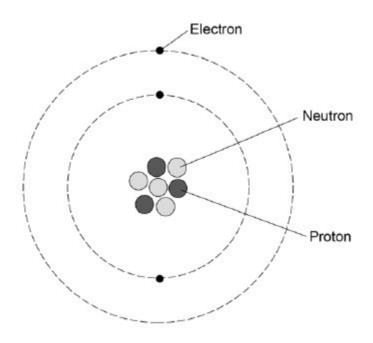
Figure 3 shows how the global temperature has changed over the past 115 years.

Figure 3

		Give one similarity and one difference between the data in Figure 2 and Figur	e 3.
		Similarity	
		Difference	
			(2) al 9 marks
8.		eacher used a Geiger-Muller tube and counter to measure the number of counts conds for a radioactive rock.	s in 60
	(a)	The counter recorded 819 counts in 60 seconds. The background radiation count rate wood. 30 counts per second. Calculate the count rate for the rock.	as
		Count rate = per second	(3)
	(b)	A householder is worried about the radiation emitted by the granite worktop in his kitche	
		1 kg of granite has an activity of 1250 Bq. The kitchen worktop has a mass of	
		180 kg. Calculate the activity of the kitchen worktop in Bq.	
			(2)

(d)

(c) The average total radiation dose per year in the UK is 2.0 millisieverts.The table below shows the effects of radiation dose on the human body.


Radiation dose in millisieverts	Effects
10 000	
1000	Immediate illness; death within a few weeks
100	Radiation sickness; unlikely to cause death
	Lowest dose with evidence of causing cancer

The average radiation dose from the granite worktop is 0.003 millisieverts per day. Explain why the householder should not be concerned about his yearly radiation dose from the granite worktop (separate only) One year is 365 days. (2) Bananas are a source of background radiation. Some people think that the unit of radiation dose should be changed from sieverts to Banana Equivalent Dose. Suggestione reason why the Banana Equivalent Dose may help the public be more aware (separate only)

(Total 8 marks)

9.

The diagram shows a lithium atom.

(a) What is the mass number of this lithium atom?

Tick **one** box.

	3		4	7	10
--	---	--	---	---	----

(b) What is the atomic number of a lithium atom?

Tick one box.

	3		4		7	10
Give	a	reason		for	your	answer.
						-

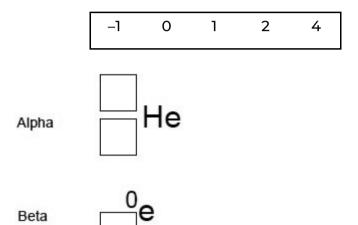
Page 20 of 28

(2)

Atomic Structure (F)

(c) Complete the sentence.

Choose the answer from the box.


circles levels rings

The electrons in an atom orbit in different energy _____

(1)

(d) Some atomic nuclei are unstable and decay by emitting an alpha particle or a beta particle.Complete the symbols for an alpha particle and a beta particle.

Use answers from the box.

(3)

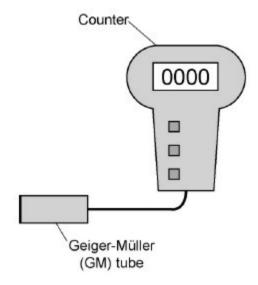
(e) Doctors may use nuclear radiation to diagnose certain types of illness.

The table below gives data about three radiation sources used.

Each source emits beta radiation.

Radiation source	Half-life in minutes
Carbon-11	20
Nitrogen-13	10
Oxygen-15	2

Atomic Structure (F) Explain why oxygen-15 is likely to pose the least risk to a patient.(separate only) (2) (Total 9 marks) Sources of background radiation are either natural or man-made. 10. Which two of the sources listed in the table are natural sources of background radiation? (a) Tick two boxes. (separate only) Cosmic rays Medical X-rays Nuclear power stations Nuclear weapons testing Radon gas


Page 22 of 28

(2)

A teacher used a Geiger-Müller (GM) tube and counter to measure the background radiation in his laboratory.

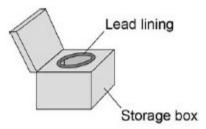
Figure 1 shows the GM tube and counter.

Figure 1

(b) The table gives three readings taken by the teacher at three different times on the same day.

Counts in 1 minute
16
21
18

What is the most likely reason for the readings being different?


Tick one box.

Radioactive decay is a random process.	
The air pressure in the laboratory increased.	
The background radiation increased during the day.	8. 8
The temperature in the laboratory decreased.	8 8

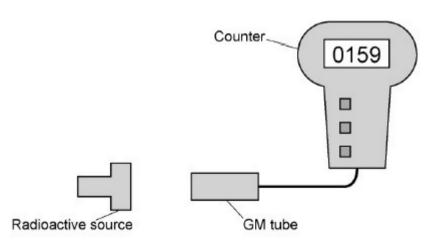
(c) The teacher takes a radioactive source from a storage box.

Figure 2 shows the box.

Figure 2

Why does storing the radioactive source in the box reduce the risk of radiation exposure to the teacher?

Tick one box.


The lead lining absorbs the emitted radiation.	
The lead lining reflects the emitted radiation.	
The lead lining transmits the emitted radiation.	

(d) Figure 3 shows how the teacher used the GM tube and counter to measure the radiation emitted from the radioactive source.

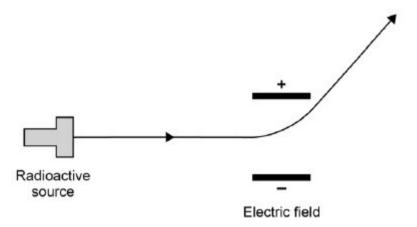
The counter was reset to zero.

The count after one minute was 159.

Figure 3

Atomic Structure (F)

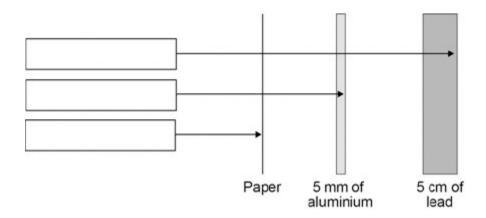
How should the teacher calculate the counts from the radioactive source? Tick **one** box.


Add the background count to 159	
Divide the background count by 159	
Multiply the background count by 159	
Subtract the background count from 159	

(1)

(e) The teacher passed the radiation through an electric field.

Figure 4 shows the path that the radiation took through the electric field.


Figure 4

Tick one box.					
Alpha	Beta	Ga	mma	Neutron	
Explain the	reason	for	your	answer.	
				(3 Total 8 mark)	3) ks)
- 1					,
a, beta and gamma are	types of nuclear r	adiation.			,
Draw one line from eac			the radiation	consists of.	,
		n to what	the radiation hat radiation		•
Draw one line from eac		n to what W l		consists of	•
Draw one line from eac		n to what W l	hat radiation	consists of	,
Draw one line from each		n to what WI	hat radiation lectron from t	consists of	,
Draw one line from each		n to what WI	hat radiation lectron from t	consists of the nucleus	,
Draw one line from each		to what	hat radiation lectron from t	consists of the nucleus two neutrons	,
Draw one line from each		Two	hat radiation lectron from to	two neutrons	
					Explain the reason for your answer.

(b) A teacher demonstrates the penetration of alpha, beta and gamma radiation through different materials.

The demonstration is shown in the figure below.

Complete the figure above by writing the name of the correct radiation in each box.

(2)

(c)	Give t	wo	safety	precautions	the	teacher	should	have	taken	in	the	
	demor	nstra	ition.								1.	
											2.	

(2)

(d) The table below shows how the count rate from a radioactive source changes with time.

Time in seconds	0	40	80	120	160
Count rate in counts/second	400	283	200	141	100

Use the table to calculate the count rate after 200 seconds.

(2)

Atomic Struc	ture (F)
	(e)	The half-life of the radioactive source used was very short. Give one reason
		why this radioactive source would be much less hazardous after 800 seconds.
		(1) (Total 10 marks)
12.	Scie	ntists sometimes replace one scientific model with a different model. For
	replanuc nucl Expl	mple, in the early 20th Century the plum pudding model of the atom was acced by the ear model of the atom. ain what led to the plum pudding model of the atom being replaced by the ear model of atom.
		(Total 6 marks)