
All questions are for both separate science and combined science students

Q1.

This question is about fuels and energy.

The graph below shows the percentage of electricity generated in the UK between 2007 and 2017 using:

- oil
- solar energy.

(a) Describe the changes in the percentage of electricity generated in the UK between 2007 and 2017 using:

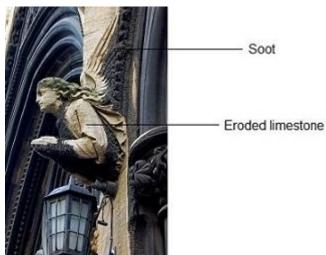
Use data from the graph above in your answer.

- oil
- solar energy.

(3)

(b) Oil contains carbon and some sulfur.

	nmental effects of releasing these products of
combustion into th	e atmosphere.
	n why using solar energy is a more sustainable way of ity than burning oil.
generating electric	ot be able to replace the generation of electricity from
generating electric Solar energy may n	ot be able to replace the generation of electricity from tely.
Solar energy may notes to solar energy may notes to solar energy may notes are solar energy may notes to solar energy may notes are solar energy energy may notes are solar energy ene	ot be able to replace the generation of electricity from tely.
Solar energy may notes to some the comples of the complex of the c	ot be able to replace the generation of electricity from tely.
Solar energy may not so so il fuels comple	ot be able to replace the generation of electricity from tely. ns why.
Solar energy may not so so il fuels comple	ot be able to replace the generation of electricity from tely.


Q2.

This question is about atmospheric pollution.

The image below shows a limestone carving which has been damaged by atmospheric pollution.

The carving has been:

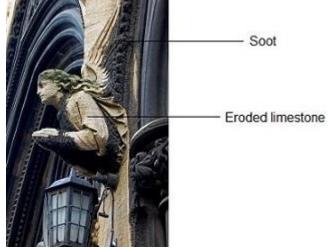
- blackened by soot
- eroded where the limestone has reacted with atmospheric pollutants.

(a)	What reacted with th	e limestone to cause th	e erosion?	
	Tick (\lor) one box.			
	Acid rain			
	Ammonia			
	Carbon monoxide			
	Oxygen			
				(1)
(b)	Soot is produced by t	he incomplete combus	tion of diesel oil.	
	Complete the senten	ices.		
	Choose answers from	n the box.		
	ammonia	carbon	methane	

oxygen

nitrogen

	Incomplete combustion	happens when th	ere is not enough		
	Incomplete combustion	produces particle	es of		
(c)	Complete the sentence.			(2)	1
(0)	•				
	Particles of soot in the a	tmosphere cause	global	· (1))
(d)	Carbon monoxide is prod	duced by the inco	mplete combustion of m	ethane.	
	Balance the equation for	the reaction.			
	2 CH4 +	3 02 →	CO + 4 H2O		
				(1)	į
(e)	Car engines work at high	temperatures.			
	Complete the sentences	·			
	Choose answers from th	e box.			
	air	methane	oxides of nitrogen		
	oxygen	petrol	sulfur dioxide		
	In car engines, nitrogen	is present.			
	The nitrogen in car engir	nes comes from			
	At high temperatures, th	e nitrogen reacts	with	·	
	This reaction produces _		·		
				(3	•
				(Total 8 marks))


Q3.

This question is about atmospheric pollution.

The image below shows a limestone carving which has been damaged by atmospheric pollution.

The carving has been:

- blackened by soot
- eroded where the limestone has reacted with atmospheric pollutants.

Fossil fu	els are	burn	ed ir	n car e	engir	nes.						
Explain herosion			_	e amo	unt	of sul	fur in	fos	sil fue	ls red	uces t	he
Oxides o engines.	f nitro	gen ar	e at	mosp	heri	c poll	utant	s w	nich a	re forr	ned in	car

Q4. Some central heating boilers use methane as a fuel. Carbon monoxide detectors are placed near central heating boilers. (a) Which three properties of carbon monoxide make it necessary to us carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1								
Q4. Some central heating boilers use methane as a fuel. Carbon monoxide detectors are placed near central heating boilers. (a) Which three properties of carbon monoxide make it necessary to us carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1								
Some central heating boilers use methane as a fuel. Carbon monoxide detectors are placed near central heating boilers. (a) Which three properties of carbon monoxide make it necessary to us carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1								
Some central heating boilers use methane as a fuel. Carbon monoxide detectors are placed near central heating boilers. (a) Which three properties of carbon monoxide make it necessary to us carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1	(Total 8 mar	C						
Carbon monoxide detectors are placed near central heating boilers. (a) Which three properties of carbon monoxide make it necessary to us carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1							Q4.	C
(a) Which three properties of carbon monoxide make it necessary to us carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1			as a fuel.	nethane	oilers use m	e central heating b	Some	
carbon monoxide detectors? Choose answers from the box. acidic alkaline colourless corrosiv insoluble odourless toxic 1		ıg boilers.	ar central heat	aced nea	ctors are pla	on monoxide dete	Carbo	
insoluble odourless toxic 1	е	cessary to use	xide make it n		e detectors?	carbon monoxide	(a) W	
1	e	corrosive	olourless	С	alkaline	acidic		
2		toxic	urless	odo	oluble	ins		
3 (b) Complete the sentence. Methane produces carbon monoxide when burning in a limited su						1		
(b) Complete the sentence. Methane produces carbon monoxide when burning in a limited su						2		
(b) Complete the sentence. Methane produces carbon monoxide when burning in a limited su						3		
Methane produces carbon monoxide when burning in a limited su								
					ntence.	Complete the ser	(b)	
·································	ipply of	n a limited supp	when burning	onoxide	es carbon mo	Methane produce		
				·				
(c) 8 g of methane has a volume of 12 dm3 at room temperature and	pressure.	perature and pr	n3 at room ter	of 12 dn	as a volume	8 g of methane ha	(c)	
Calculate the mass of 36 dm3 of	methane.	3 of m	36 dn	of	e mass	Calculate the		

Mass = ______ g

(2)

(d)	Most methane is obtained from	n natural gas, which is a fossil fuel.	
	Methane can also be produced	d renewably.	
	Which two are renewable soul	rces of methane?	
	Tick (\lor) two boxes.		
	Animal waste		
	Food in landfill		
	Nitrogen in the air		
	Non-biodegradable plastics		
	Scrap iron		
		(Total 8	(2)
		(Total o	marks
Q5.			
	question is about combustion o		
(a)	Some central heating boilers u		
	Suggest two reasons why woo fuel for central heating boilers	od is more sustainable than natural gas as a	
	1		
			-
	2		
			-
			(2)
	ural gas is mainly methane.		
Whe	en methane burns it can produce	e both carbon monoxide and carbon dioxide.	
(b)	Explain the process by which on methane is burned.	carbon monoxide can be produced when	
			-
			-

Q6.

This question is about fuels.

Octane (C8H18) is a hydrocarbon in petrol.

(a) Cracking breaks down large hydrocarbon molecules into smaller hydrocarbon molecules.

(Total 9 marks)

which hydrocarbon molecule can be cra	cked to produce octane, Conto?
Tick one box.	
C4H8	
C4H ₁₀	
C8H ₁₆	
C12H ₆	
What type of carbon compound is octano	e, C8H18?
Tick one box.	
Alcohol	
Alkane	
Carboxylic acid	
Ester	
Oxygen is needed to burn fuels.	
Name the source of the oxys	gen needed to burn fuels.
Particulates and sulfur dioxide are pollut burn.	
Draw one line from each pollutant to the	polluting effect.
Pollutant	Polluting effect
	Acid rain

	Particulates	Global dimming	
		Global warming	
	Sulfur dioxide	Landfill	
		Sewage sludge	(2)
(e)	Which two gases are produc	ed when fuels burn in car engines?	(2)
	Tick two boxes.		
	Ammonia		
	Carbon dioxide		
	Carbon monoxide		
	Nitrogen		
	Oxygen		
(f)	Vehicles produce most of the	atmospheric pollution in cities.	(2)
		pollution in cities be reduced?	
	Tick two boxes.		
	Build more roads in cities		
	Build new car factories		
	Develop fuel efficient engine	es	
	Make car tax cheaper		

Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes. The table below shows the maximum allowed percentages of exhaust pollutants for petrol cars. Age of car		Use electr	ric cars			
Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes. The table below shows the maximum allowed percentages of exhaust pollutants for petrol cars. Maximum allowed percentage (%) of exhaust pollutant Carbon Unburned hydrocarbons 16–24 0.30 0.02 3–16 0.20 0.02 (a) Explain how carbon monoxide is produced when petrol is burned in car engines. ———————————————————————————————————						() (Total 9 marks)
Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes. The table below shows the maximum allowed percentages of exhaust pollutants for petrol cars. Maximum allowed percentage Age of car (%) of exhaust pollutant In years Carbon Unburned hydrocarbons 16–24 0.30 0.02 3–16 0.20 0.02 (a) Explain how carbon monoxide is produced when petrol is burned in car engines. (b) Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars. 1						
in exhaust fumes. The table below shows the maximum allowed percentages of exhaust pollutants for petrol cars. Maximum allowed percentage			otod ooob			
for petrol cars. Age of car in years Carbon Unburned hydrocarbons 16-24 0.30 0.02 3-16 0.20 0.02 (a) Explain how carbon monoxide is produced when petrol is burned in car engines. Carbon Unburned hydrocarbons				ir to measure th	e amount of pollut	ants contained
Age of car in years Age of car in years Carbon Unburned hydrocarbons 16-24 0.30 0.02 3-16 0.20 0.02 (a) Explain how carbon monoxide is produced when petrol is burned in car engines. (b) Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars. 1	The	table below	shows the ma	aximum allowed	percentages of ex	haust pollutants
Age of car in years Carbon Unburned hydrocarbons 16–24 0.30 0.02 3–16 0.20 0.02 (a) Explain how carbon monoxide is produced when petrol is burned in car engines. (b) Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars. 1	for p	etrol cars.				
Age of car in years Carbon Unburned hydrocarbons 16–24 0.30 0.02 3–16 0.20 0.02 (a) Explain how carbon monoxide is produced when petrol is burned in car engines. ———————————————————————————————————				Maximum all	owed percentage]
(a) Explain how carbon monoxide is produced when petrol is burned in car engines. (b) Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars. 1			Age of car			
(a) Explain how carbon monoxide is produced when petrol is burned in car engines. (b) Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars. 1				Carbon	Unburned	
(a) Explain how carbon monoxide is produced when petrol is burned in car engines. ———————————————————————————————————			16-24	0.30	0.02	
engines.			3-16	0.20	0.02	
monoxide has been decreased for newer cars. 1						
monoxide has been decreased for newer cars. 1						
	(b)					·
		1				
2						
		2				
						(2
(c) Give one reason for having a maximum allowed percentage of unburned hydrocarbons in exhaust fumes.	(c)				ıllowed percentage	

Oxio	des of nitrogen are also pollutants contained in exhaust fumes.
(d)	Describe how oxides of nitrogen are produced when petrol is burned in car engines.
	alytic converters are fitted to car exhausts to reduce the amount of pollutants ased into the atmosphere.
(e)	Nitrogen dioxide is an oxide of nitrogen.
	Nitrogen dioxide reacts to produce nitrogen and oxygen in catalytic converters. Complete the equation for this reaction.
	The equation should be balanced.
	NO ℓ(g) → +O(g)
(f)	Give two effects of atmospheric pollution which are reduced by using catalytic converters. 1
	2
(g)	The catalyst in catalytic converters is a mixture of three elements.
	Where in the periodic table are these elements most likely to be found?
	Tick one box.
	Alkali metals
	Halogens

Coal is	Transition metals s used as a fuel in power the percentages.			(Total 12 m			
The ta	able shows the percenta			(Total 12 m			
Coal is	able shows the percenta			(10tal 12 llie			
Coal is	able shows the percenta						
The ta	able shows the percenta						
		ge oi carbon and su	Ifur in four different	cool			
			tiui iii iour airierent	Coal			
		Percentage (%) by mass in coal					
	Sample	Carbon	Sulfur				
	А	22.1	0.4				
	В	46.8	0.6				
	С	66.3	0.9				
	D	92.0	0.7				
-	Name the gas.						
(b)	Give one environmental	effect caused by ac	cid rain.				
(c) '	Which coal sample prod	uces the most acid	rain from 1 kg of coa				
	Which coal sample produces the most acid rain from 1 kg of coal? Use the table above.						
	Give a reason for your answer. Sample						
	•						
	Reason						

complete the	equation for the	complete combu	stion of propar	ne.	
C3H8 + 5	502 → 3 _		_ +4		
Octane (C8H1	.8) is a hydrocarb	oon found in netr	rol Explain wh	v octane is a	
nydrocarbon.	o) is a riyarocark	on round in pen	ot. Explain wil	y octanic is t	
ryarocarbon.					
he table belo	w gives informat	ion about the pol	lutants produc	ed by cars	
ısing diesel oı	r petrol as a fuel.				
Fuel	Relative amounts of pollutants				
	Oxides of Nitrogen	Particulate matter	Carbon dioxide		
 Diesel	31	100	85	_	
Petrol	23	0	100	_	
petrol.	oollutants from ca	ars using dieset v	vitii those ironi	i cars using	

Environmental impact caused by the pollutant		
Acid rain		
Flooding		
Global dimming		
Global warming		
Photosynthesis	(2)	
	(2) (Total 11 marks)	
	Acid rain Flooding Global dimming Global warming	