Mark schemes

Q1	(a)	fuel		
	(d)	luet	1	
	(b)	propene	1	
	(c)	(percentage yield =)		
		$\frac{300}{400} \times 100$	1	
		= 95 (%)	1	
	(d)	some ethanol changes back into ethene and steam	I	
			1	
		some ethanol escapes from the apparatus	1	
	(e)	C2H5OH + 3 O2 → 3 H2O + 2 CO2		
		allow multiples	1	
	(f)	(advantages)		
		(fermentation) low energy usage	1	
		(fermentation) uses renewable raw materials	1	
		(disadvantages)	I	
		(fermentation) produces impure ethanol	1	
		(fermentation) slow rate of reaction	I	
			1	[11]
0.2				
Q2	(a)	(test) (add) bromine (water)	1	
		(result)		
		(changes from) brown / orange to colourless ignore clear		
			1	

(b)	CnH _{2n-2}	1	
(c)	H = H + H + H + H + H + H + H + H + H +		
(-1)		2	
(d)	(Mr(C6H10Cl2) =) 153	1	
	(% chlorine=) $\frac{71}{153} \times 100$ allow correct use of an incorrectly calculated value of Mr = 46.4 (%) allow 46.405228758 (%) correctly rounded to at least 2 significant figures	1	[8]
Q3. (a)	(steam / catalytic) cracking allow thermal decomposition	1	
(b)	high temperature	1	
	steam / catalyst allow a temperature in the range 300 – 900 °C	1	
(c)	Level 3: Relevant points (reasons/causes) are identified, given in detail and logically linked to form a clear account.	5-6	
	Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	3-4	

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

1-2

No relevant content

0

1

1

1

1

Indicative content

Rate

- higher temperature gives higher rate
- because more frequent collisions higher
- pressure gives higher rate because more
- frequent collisions a catalyst can be used to
- give a higher rate because the activation
- energy is reduced

Yield

- higher temperature gives lower yield
- because the reaction is exothermic
- higher pressure gives higher yield
- because there are more molecules on left hand side

Other factors

- higher temperatures use more energy so costs increase
- higher pressures use more energy so costs increase
- higher pressures require stronger reaction vessels so costs
 increase

Compromise

- chosen temperature is a compromise between rate and yield
- chosen temperature is a compromise between rate and cost (of
- energy used)
- chosen pressure is a compromise between rate and cost (of energy used) chosen pressure is a compromise between yield and cost (of energy used)
- (d) fermentation

allow ferment(ing)

(e) warm

allow a value in the range 25 °C to 45 °C

anaerobic (conditions) allow without oxygen / air

(f) (conversion) 200 km = 200,000 m $(moles =) \quad (moles =) \frac{200000 \times 1.95 \ (mol)}{1300}$ $allow \ correct \ use \ of \ incorrect \ / \ no \ conversion \ for \ distance$

2 [17]

1

1 1 1

1

1

1

1

Q4.

(b)

Name of element	Symbol for element	Number of atoms in molecule of ethanol 2
carbon	С	
hydrogen	H O	6
oxygen		1

ignore O2

(c) a solvent

(d) sugar

allow named sugar allow saccharide

(e)	yeast	1	
(f)	ethyl ethanoate	1	
(g)	water ignore H2O	1	
(h)	400 cm3 = 0.40 dm3	1	
	1.00 0.40 × 20 allow correct use of incorrectly converted or unconverted volume	1	
	= 50 (g)	1	
	alternative approach:		
	1.0 dm3 = 1000 cm3 (1)		
	$\frac{1000}{400} \times 20 (1)$ <i>allow correct use of incorrectly</i>		
	converted or unconverted volume		
			[12]
Q5. (a)			
	C ₆ H ₈		
	Hexane C ₆ H ₁₀		
	C ₆ H ₁₂		
	Hexene C ₆ H ₁₄		
	C ₆ H ₁₆		
		1	
	additional line from a box on the left negates the mark for that box	1	
(b)	(remains) orange		

must be in this order

		allow no (colour) change	1
	(beco	mes) colourless	
		ignore initial colour ignore clear	1
(c)	Level 2 which the ma	2: Scientifically relevant features are identified; the way(s) in they are similar/different is made clear and (where appropriate) agnitude of the similarity/difference is noted.	4-6
	Level	1: Relevant features are identified and differences noted.	1-3
	No re	levant content	0
	Indica	ative content	
	Struct	ture and bonding	
	• • •	both are hydrocarbons both contain two carbon atoms (per molecule) ethane contains six hydrogen atoms (per molecule) (but) ethene contains four hydrogen atoms (per molecule)	
	•	both have covalent bonds	
	•	ethane contains a single C—C bond (but) ethene contains a double bond both contain C—H bonds	
	•	both small molecules	
	React	ions	
	•	both react with oxygen in complete combustion reactions to produce water and carbon dioxide both react with oxygen in incomplete combustion reactions to produce water, carbon monoxide and carbon incomplete combustion is more likely with ethene	
	•	ethene decolourises bromine water	
	•	(but) ethane does not decolourise bromine water	
	•	ethene is more reactive (than ethane)	
	•	ethene can react with hydrogen (to produce ethane) ethene can react with water (to produce ethanol) ethene can react with halogens (to produce halogenoalkanes) ethene can undergo addition reactions ethene can polymerise (to produce poly(ethene)) ignore physical properties ignore references to flammability	

[10]

Q6.		
(a)	HCOOH allow HCO2H	
		1
	propanoic acid	1
(b)	incomplete / partial ionisation	
	allow incomplete / partial dissociation	1
	(because) reaction is reversible	I
	allow (because) reaction is in	
	equilibrium	1
(c)	mass (of flask and contents) decreases	
		1
	(because) carbon dioxide is produced	1
	(and) carbon dioxide escapes (from the flask)	
	allow mark for the gas produced escapes (from the flask)	
		1
(d)	(0.01 mol/dm3) methanoic acid has a lower pH	
	acid	
	allow (0.01 mol/dm3) methanoic acid is a stronger acid	
		1
	(so 0.01 mol/dm3) methanoic acid has a higher concentration of hydrogen ions	
		1
	(therefore) more collisions per unit time	1
(e)	ethvl ethanoate	
		1
(f)		
	н-ç-с-о-с-н	
	Ĥ ĤĤ	1

Q7.

(a) formulation

[12]

(b)
$$\frac{23.3}{205.5+23.3+3.0+1.5} (\times 100)$$

$$allow \frac{23.3}{293.3} (\times 100)$$

$$= 7.9 (\%)$$

$$allow 7.944084555 (\%) rounded$$

$$correctly$$

$$an answer of 7.9 (\%) scores 2 marks$$
(c) to deter consumption / drinking (by people)
(d) any one from:
$$fuel$$

$$dlow specific uses e.g.$$

$$fuel additive$$

$$cleaning products$$

$$do not accept as an alcoholic drink
(e) ferment(ation)$$

$$ignore distillation$$
add yeast
$$anaerobic (conditions)$$

$$allow in the absence of oxygen$$

$$dr warm$$

$$allow room temperature value in range 5 - 45°C inclusive$$

$$allow room temperature$$

$$allow room temperature in range 5 - 45°C inclusive$$

$$allow room temperature and the absence of oxygen$$
(f)
$$H + H$$

		1	
(g)	hydrogen allow H2	1	
(h)	oxidising (agent). allow permanganate / dichromate ions allow [O] ignore oxygen	1	[11]
Q8. (a)	Propanol	1	
(b)	Butanol has the highest boiling point	1	
(c)	Н — С — О — Н Н	1	
(d)	ethene + water (→ ethanol) allow answers in either order allow steam for water	1	
(e)	goes back to reactor allow is recycled	1	
(f)	air contains oxygen	1	
	which oxidises ethanol <i>allow ethanol reacted with oxygen</i>	1	
	to produce ethanoic acid	1	[8]

fizz / effervescence / bubbles (a) (i) allow calcium carbonate decreases in size or dissolves 1 because carbon dioxide produced / released allow because gas produced / released 1 limewater turns cloudy / milky / white 1 because (a precipitate of or solid) calcium carbonate forms allow because of carbon dioxide if not already credited 1 н H - C - C = 0L (ii) 0-H н allow -OH do not allow lower case 'h' 1 (iii) acid must be in this order ignore any name of an acid 1 ester(s) 1 (b) white (precipitate) no change no change no change all four correct 2 marks any two correct 1 mark 2 (c) (i) lilac allow purple 1 red 1 must be in this order (ii) colours are masked / changed by each flame colour 1

[12]

Q10. (a) C6H	14		
		1	
(b) A		1	
(c) B		1	
(d) C		1	
(e) P	ropanol	1	
			[5]