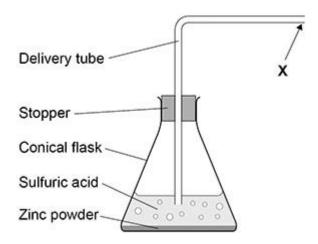
All questions are for both separate science and combined science students

Q1							
	This question is about reactions between gases.						
	Wh	en hydrogen gas is heated with iodine gas, hydrogen iodide gas is pro	oduced				
	The	e equation for this reversible reaction is:					
		hydrogen + iodine ⇌ hydrogen iodide					
	This	s reversible reaction reaches equilibrium in a sealed container.					
	(a)	How does the equation show that the reaction is reversible?					
			(1)				
	(b)	Which two statements are correct when the reaction reaches equili	brium?				
		Tick (√) two boxes.					
		The forward reaction and reverse reaction are both exothermic. The gases have escaped from the container. The hydrogen no longer reacts with iodine. The mass of each substance does not change. The rates of the forward reaction and reverse reaction are equal.	(2)				
	(c)	The initial mixture of hydrogen and iodine in the sealed container is	purple.				
		Hydrogen iodide is colourless.					
		How will the colour of the mixture in the sealed container have charwhen equilibrium is reached? Tick (\checkmark) one box.	nged				
		The mixture will have become a deeper purple.					

(1)							
The rate of reaction between gases is affected by changing the pressure.							
When the pressure of the reacting gases is increased,							
the rate of reaction							
(3)							
es.							
r.							
(1) 3 marks)							

Q2.


A student investigated the rate of the reaction between zinc and sulfuric acid.

This is the method used.

- 1. Pour 40 cm3 of sulfuric acid into a conical flask.
- 2. Add 2.0 g of zinc powder to the conical flask.
- 3. Put the stopper in the conical flask.
- 4. Measure the volume of hydrogen gas collected every 30 seconds for 5 minutes.

Figure 1 shows part of the apparatus used.

Figure 1

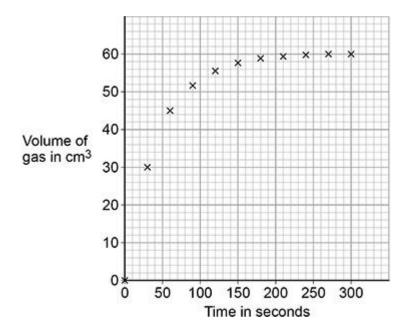
(a) X shows where a piece of equipment is connected to measure the volume of hydrogen gas collected.

Complete Figure 1 to show the equipment used.

(1)

(b) The student made an error setting up the delivery tube shown in Figure 1.

Describe the error and the problem this error would cause.


Error		
made	 	
	 	 -
Problem		
caused	 	
	 	 -

(2)

The student then set up the apparatus correctly.

Figure 2 shows the student's results.

Figure 2

(c) Complet&Figure 2 by drawing a line of best fit.

(1)

(d) Determine the mean rate of reaction between 0 seconds and 60 seconds.

Use the equation:

mean rate of reaction =
$$\frac{\text{volume of gas formed}}{\text{time taken}}$$

Use data from Figure 2.

Give the unit.

Choose the answer from the box.

cm3/ s	g/s	s / cm3	s/g	

Mean rate of reaction = _____ Unit _____

(4)

(e) The student repeated the investigation using sulfuric acid of a higher concentration.

The student plotted the results and drew a line of best fit.

How would the line of best fit for higher concentration compare with the line of best fit for lower concentration?

Tick (√) one box.

The line of best fit for higher concentration would have a less steep slope.	
The line of best fit for higher concentration would have a steeper slope.	
The lines of best fit would have slopes with the same steepness.	

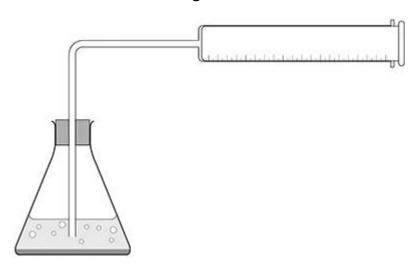
Q3.

A student investigated how a change in concentration affects the rate of the reaction between zinc powder and sulfuric acid.

(1)

(Total 9 marks)

The equation for the reaction is:


$$Zn(s) + H2SO4(aq) \rightarrow ZnSO4(aq) + H2(g)$$

This is the method used.

- 1. Pour 50 cm3 of sulfuric acid of concentration 0.05 mol/dm3 into a conical flask.
- 2. Add 0.2 g of zinc powder to the conical flask.
- 3. Put the stopper in the conical flask.
- 4. Measure the volume of gas collected every 30 seconds for 5 minutes.
- 5. Repeat steps 1 to 4 with sulfuric acid of concentration 0.10 mol/dm3

Figure 1 shows the apparatus used.

Figure 1

What 	error	did	the	student	make? —
	rected the				
Volu of ga in cr	80 70 60 me 50 as n ³ 40 10	50 100	150 200 Time in sec	250 300	
Explain wh		— 0.05 mc	ol/dm ³ sulfur ol/dm ³ sulfur	ic acid	ontal. —

(c) How doesFigure 2 show that zinc powder reacts more slowly with 0.05

Deterr second		e reaction for 0.05 mol/d	dm3 sulfuric	acid at 8
Show	your working on F	igure 2.		
Give y	our answer to 2 sig	gnificant figures.		
	Rate of reaction	n (2 significant figures) =		cm3
		the reaction between z taining metal ions is add		uric acic
lowere	ed if a solution con		ded.	uric acic
lowere What	ed if a solution con	taining metal ions is add	ded.	uric acic
lowere What	ed if a solution con is the most likely fo	taining metal ions is add	ded.	uric acic
lowere What Tick (v	ed if a solution con is the most likely fo	taining metal ions is add	ded.	uric acic
lowere What Tick (A A	ed if a solution con is the most likely fo	taining metal ions is add	ded.	uric acic

Q4.

This question is about the rate of the reaction between hydrochloric acid and

calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

- 1. Pour hydrochloric acid into a conical flask up to the 50 cm3 line.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- 3. Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 20 seconds for 100 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.
- (a) The student used the 50 cm3 line on the conical flask to measure the volume of hydrochloric acid.
 Suggest a piece of equipment the student could use to make the measurement of volume more accurate.

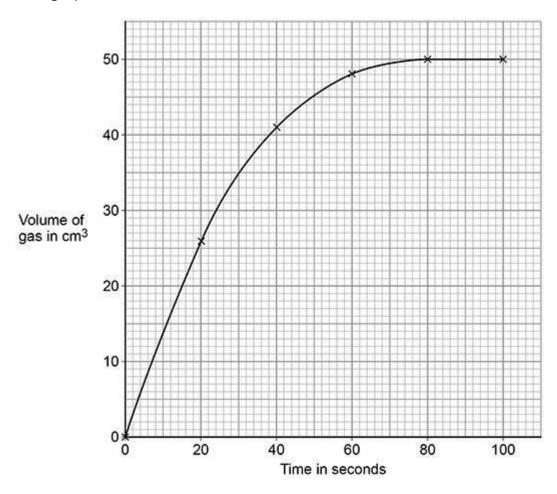
(1)

(b) Carbon dioxide gas is produced in the reaction between hydrochloric acid and calcium carbonate.

Which test is used to identify carbon dioxide gas?

Tick (\checkmark) one box.

A burning splint pops	
A glowing splint relights	3
Damp litmus paper is bleached	3
Limewater turns milky	9


(1)

The table below shows the student's results for large calcium carbonate lumps.

Time in seconds	Volume of gas in cm3
0	0
20	16
40	30

60	40
80	46
100	48

The graph below shows the student's results for small calcium carbonate lumps.

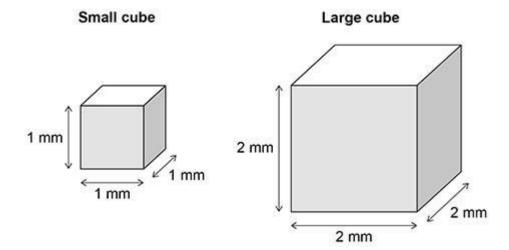
(c) Complete the graph above.

You should:

- plot the data for large calcium carbonate lumps from the table above on the graph paper
- · draw a line of best fit for large calcium carbonate lumps.

(3)

(d) Determine the mean rate of reaction usined calcium carbonate lumps between 0 seconds and 60 seconds.


Use the equation:

Use the graph above.

		/c
	cities	, 3
(e)	Describe what happens to the volume of gas collected using small carbonate lumps:	cal
	· between 0 and 20 seconds	
	• between 80 and 100 seconds.	
	Use the graph above.	
	Between 0 and 20 seconds	
	Between 80 and 100 seconds	
(f)	The balance used to weigh 10.0 g of calcium carbonate lumps cause error.	ed i
	The balance always read 0.2 g before being used.	
	What type of error was caused by the balance?	
	Tick (√) one box.	
	Human error	
	Random error	
	Systematic error	

AQA Chemistry GCSE - Rate of Reaction

The diagram shows the dimensions of two cubes of calcium carbonate.

(g)	A cube of calcium carbonate has six faces. Calculate t	he total
	surface area of the large cube of calcium carbonate.	Use the
	diagram	above.
		_
		_
		_
		_
		_

(h) The large cube of calcium carbonate was divided into eight smaller cubes.

The eight smaller cubes have a greater total surface area than the one large cube.

Compare the rate of reaction when using the eight smaller cubes with the rate of reaction when using the large cube.

Complete the sentence.

Choose the answer from the box.

faster slower the same

The rate of reaction of the eight smaller cubes is ______.

(1)

(Total 15 marks)

\sim	_	
()	n	
$\mathbf{\mathcal{V}}$	$\boldsymbol{\mathcal{I}}$	•

This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

The table below shows information about the first three carboxylic acids in this homologous series.

Name	Formula	pH of a 0.01 mol/dm3 solution
Methanoic acid		2.91
Ethanoic acid	СНЗСООН	3.39
	CH3CH2COOH	3.44

LUI	arioic acid	CHSCOOT	3.55
		CH3CH2COOH	3.44
(a)	Complete th	ne table above.	

(h)	Ethar	oic -	scid ic	nico	c in \	Mator
וטו	Ethai		icia ic	אכוו וו	5 II I (water.

The equation for the reaction is:

$$CH3COOH(aq) \rightleftharpoons CH3COO-(aq) + H+(aq)$$

Explain how the equation shows that ethanoic acid is a wea	ak acid.

(2)

(2)

(c) A student adds a solution of ethanoic acid to zinc carbonate in an open flask on a balance.

Explain what happens to the mass of the flask and its contents during the reaction.

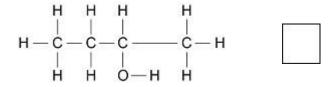
(3)

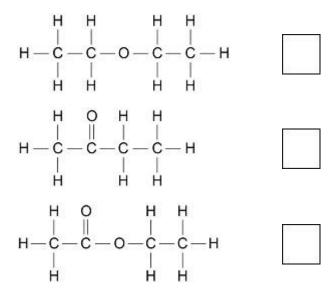
- (d) The student compares the rates of the reaction of zinc carbonate with:
 - 0.01 mol/dm3 methanoic acid
 - 0.01 mol/dm3 ethanoic acid.

The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid.

Explain why.

	=- 4- · · · · · · · · · · · · · · · · · ·		
	You should refer to ions in your answer.		
	Use the table above.		
	·		
			(3)
Eth	anoic acid reacts with ethanol to produce an ester.		
(e)	Give the name of the ester produced when ethanoic acid reethanol.	acts with	


(f) Hexanedioic acid and ethanediol join together to produce a polyester.


Ethanoic acid and ethanol join together in the same way to produce an

(1)

Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol?

Tick (√) one box.

(1) (Total 12 marks)

Q6.

This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

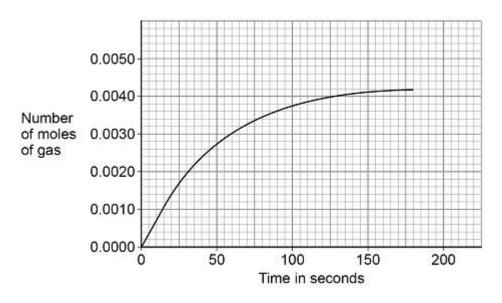
- 1. Pour 40 cm3 of hydrochloric acid into a conical flask.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- 3. Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 30 seconds for 180 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.

The student calculated the number of moles of gas from each volume of gas measured.

The table below shows the student's results for large calcium carbonate lumps.

Time in seconds	Number of moles of gas
0	0.000
30	0
60	0.0011
90	0.002
120	0
150	0.002

8


180 0.00

The student plotted the results for small calcium carbonate lumps on the graph below.

(a) Complete the graph below.

You should:

- plot the data for large calcium carbonate lumps from the table above
- · draw a line of best fit.

(b) Determine the mean rate of reaction for small calcium carbonate lumps between 20 seconds and 105 seconds.

(3)

(4)

Give the unit.

Use the	graph ab	ove.		
·				

Mean rate of reaction = _____ Unit ____

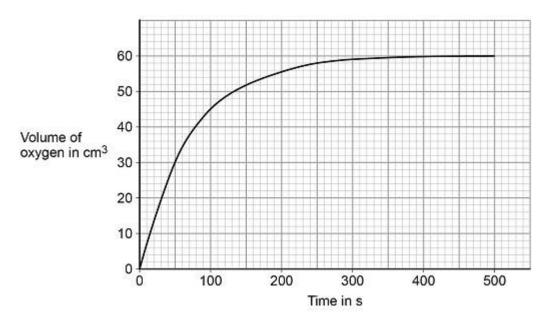
(c) The student concluded that the large calcium carbonate lumps reacted more slowly than the small calcium carbonate lumps.

Q7.

	How do the student's results show that this conclusion is correct?
	(1)
The	difference in the rates of reaction of large lumps and of small lumps of
calc	ium carbonate depends on the surface area to volume ratios of the lumps.
The	diagram below shows a cube of calcium carbonate.
	0.5 cm
(d)	Calculate the surface area to volume ratio of the cube in above
	diagram. Give your answer as the simplest whole number ratio.
	
	Surface area : volume = : (3)
(e)	A larger cube of calcium carbonate has sides of 5 cm
	Describe how the surface area to volume ratio of this larger cube differs from that of the cube shown in the diagram above.
	(1) (Total 12 marks)
Som	ne students investigated the rate of decomposition of hydrogen peroxide.
The	equation for the reaction is:
	hydrogen peroxide → water + oxygen
(a)	Complete the sentence.

Choose an answer from the box.

		a burning splint	a glowing splint	
		damp litmus paper	limewater	
	The stude	nts tested the gas prod	uced to show that it w	vas oxygen.
	The stude	nts used		
				(1)
		stigated the effect of th rate of the reaction.	e particle size of a ma	nganese dioxide
This	is the meth	nod used.		
1. M	easure 25 cr	m3 hydrogen peroxide	solution into a conical	flask.
2. A	dd some fin	e manganese dioxide p	powder to the conical i	flask.
3. M	leasure the	volume of oxygen prod	uced every 30 second	s for 10 minutes.
4. R	epeat steps	1 to 3 two more times.		
5. R	epeat steps	1 to 4 with coarse man	ganese dioxide lumps	
(b)	The metho	od student A used did r	not give repeatable res	sults.
	How could	student A make the re	esults repeatable?	
	Tick (√) on	e box.		
	minutes.	should make measure		
	Student A	should use 50 cm3 hy	drogen peroxide.	
	Student A flask.	should use a beaker ir	nstead of a conical	(1)
Stu	dent B used	a method which gave	repeatable results.	()
(c)	How could	student B improve the	e accuracy of these res	sults?


Page 17 of 48

Tick (\checkmark) one box.

Calculate a mean but do not include any anomalous results.
Calculate a mean but do not include the first set of results.
Record the results in a table and plot the results on a bar chart.
Record the results in a table and plot the results on a line graph.

(1)

The figure below shows studer results for coarse manganese dioxide lumps.

(d) Calculate the mean rate of reaction between 30 and 250 seconds for coarse manganese dioxide lumps.

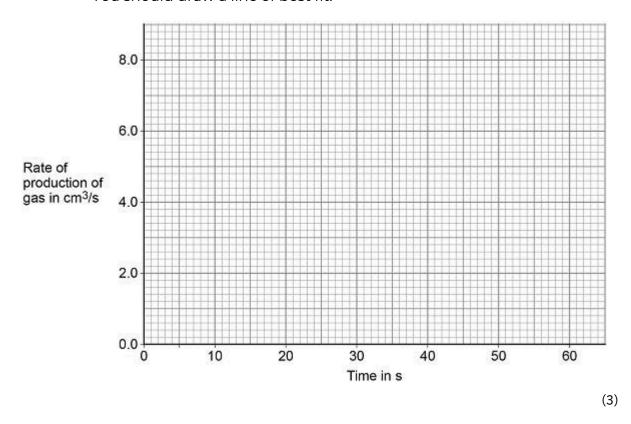
Use the figure and the equation:

Mean rate of reaction =
$$\frac{\text{Volume of oxygen formed}}{\text{Time taken}}$$

Give your answer to 3 significant figures. Volume of oxygen formed ______ Time taken _____

		Mean rate of reaction =	cm3/s	(4)
	(e)	Fine manganese dioxide powder produces a higher rate of recoarse manganese dioxide lumps.	eaction t	
		Sketch on the figure above the results you would expect for experiment with fine manganese dioxide powder.	student	B's
				(2)
	(f)	Hydrogen peroxide molecules collide with manganese dioxid during the reaction.	le particl	es
		Why does fine manganese dioxide powder produce a highe reaction than coarse manganese dioxide lumps? Tick (√) one box.	r rate of	
		Fine manganese dioxide powder has a larger surface area.		
		Fine manganese dioxide powder has larger particles.		
		Fine manganese dioxide powder produces less frequent collisions.		
		(Т	otal 10 ma	(1) arks)
Q٤				
	This	s question is about rate of reaction.		
		udent investigated the rate of the reaction between magnesi rochloric acid.	um and o	dilute
	The	equation for the reaction is:		
		Mg(s) + 2 HCl(aq) → MgCl2(aq) + H2(g)		
	(a) V	Which state symbol in the equation for the reaction does not r of the three states of matter?	epresent	t one
				(1)
	The	student determined the rate of production of hydrogen gas.		

(b) What two pieces of measuring apparatus could the student use to find the rate of production of hydrogen gas?


1 ______ 2

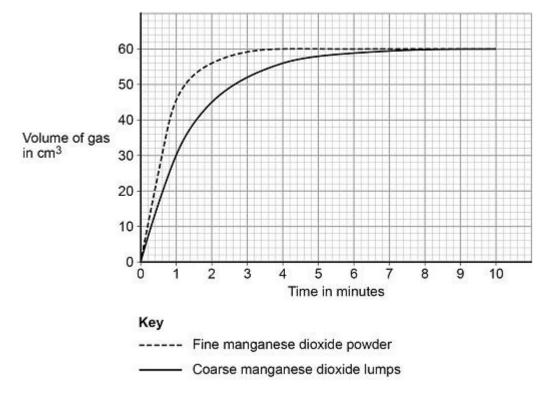
The following table shows the results of the investigation.

Time in s	Rate of production of gas in cm3/s
10	6.9
20	3.9
30	2.0
40	0.9
50	0.3
60	0.0

(c) Plot the data from the table on the graph below.

You should draw a line of best fit.

(d) Give three conclusions that can be drawn about the rate of reaction between magnesium and dilute hydrochloric acid in this investigation.


Use data from the graph and the table above.

1_____

			. 2
			7
			3
			(3)
	(e)	The student repeated the investigation using dilute hydrochigher temperature.	hloric acid at a
		All the other variables were kept the same.	
		Which two statements are correct?	
		Tick (√) two boxes.	
		More bubbles were produced in the first 10 seconds.	
		The activation energy for the reaction was higher.	
		The magnesium was used up more quickly.	
		The reaction finished at the same time.	
		The total volume of gas collected was greater.	
			(2) (Total 11 marks)
Q9		ne students investigated the rate of decomposition of hydrog	gen peroxide,
	The	equation for the reaction is:	
		2 H2O2(aq) → 2 H2O(I) + O2(g)	
	The	catalyst for the reaction is manganese dioxide.	
	(a)	Describe a test to identify the gas produced in the reaction	
		Give the result of the test.	
		Test	

	Result	
		(2)
	dent A investigated the effect of the particle size of manganese dioxerate of the reaction.	ide on
This	s is the method used.	
1. M flas	leasure 25 cm3 of 0.3 mol/dm3 hydrogen peroxide solution into a co sk.	nical
2. A	add a spatula of fine manganese dioxide powder to the conical flask.	
3. M	Measure the volume of gas produced every minute for 10 minutes.	
4. R	Repeat steps 1 to 3 with some coarse manganese dioxide lumps.	
(b)	The method student A used did not give valid results.	
	What two improvements could student A make to the method to results? Tick (/) two boxes.	give valid
	Measure the increase in mass of the conical flask and contents. Measure the volume of gas produced every 2 minutes. Place the conical flask in a water bath at constant temperature.	
	Use 0.05 mol/dm3 hydrogen peroxide solution.	
	Use a mass of 1 g manganese dioxide each time.	(2)
C+··	ident Bured a method which gave valid requite	(2)
	dent B used a method which gave valid results.	
The	e graph below shows student B's results.	

Page 22 of 48

(c) Determine the mean rate of reaction in cm3/s between 2 and 4 minutes for coarse manganese dioxide lumps.

Give your answer to 2 significant figures.

Use data from the graph.	

Mean rate of reaction = _____ cm3/s (3)

Hydrogen peroxide molecules must collide with manganese dioxide particles for catalysis to take place.

(d) Student B repeated the experiment with coarse lumps of manganese dioxide.

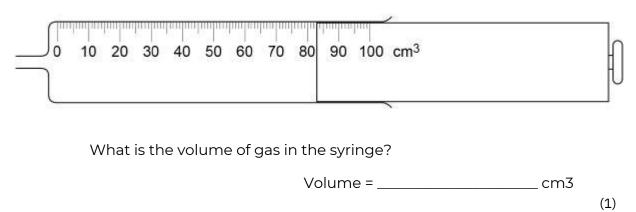
Student B used the same volume of 0.2 mol/dm3 hydrogen peroxide instead of 0.3 mol/dm3 hydrogen peroxide.

Sketch on the graph above the curve you would expect to see.

Assume that the reaction is complete after 9 minutes.

(2)

(e)	The rate of reaction is different when manganese dioxide powder rather than coarse lumps.	is used as a fine
	Explain why.	
	You should answer in terms of collision theory.	
		_
		_
		(2)
		(Total 11 marks)


Q10.

A student investigated how concentration affects the rate of reaction between magnesium and hydrochloric acid.

This is the method used.

- 1. Place hydrochloric acid in a conical flask.
- 2. Add magnesium powder.
- 3. Collect the gas produced in a gas syringe.
- 4. Measure the volume of gas every 40 seconds for 160 seconds.
- 5. Repeat steps 1-4 three more times.
- 6. Repeat steps 1-5 with hydrochloric acid of a higher concentration.
- (a) Figure 1 shows a gas syringe.

Figure 1

(b) Which two variables should the student keep the same to make the investigation a fair test?

Tick two boxes.

	Concentra	ition of h	ydrochlo	oric acid					
	Mass of m	agnesiur	m powde	er					
	Temperati	ure of hy	drochlor	ic acid					
	Time for re	eaction to	o end						
	Volume of	gas colle	ected						
									(2)
	able below of a lower c			nt's resu	lts for th	e experir	ment v	vith hyd	rochloric
	Time in	Vo	lume of g	as collect	ted in cm	3			
	seconds	Test 1	Test 2	Test 3	Test 4	Mean			
	0	0	0	0	0	0			
	40	46	30	47	49	Χ			
	80	78	83	83	82	82			
	120	98	94	96	95	96			
	160	100	100	100	100	100			
	Calculate n Do not incl Give your a	ude the	anomalo	ous resul	t in your	calculati	on.		
								_ cm3	(2)
. ,	Plot the da								

You do not need to draw a line of best fit.

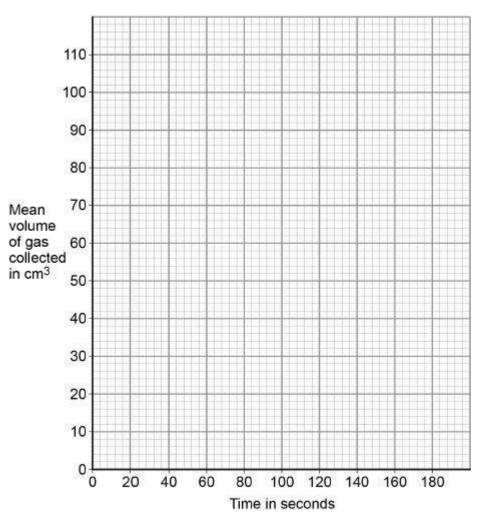
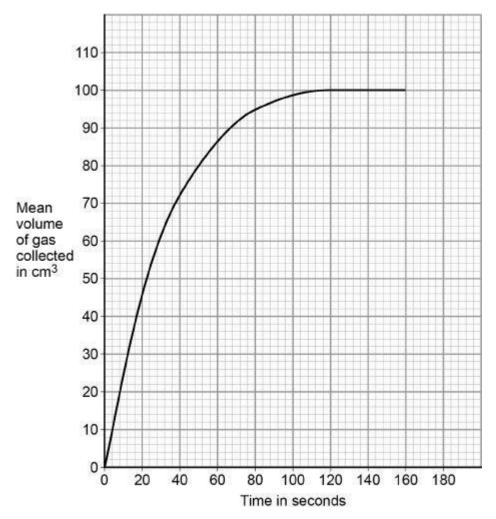



Figure 3 shows results of the experiment with the hydrochloric acid of a higher concentration.

(2)

Figure 3

(f)

(e) Calculate the mean rate of reaction between 0 and 50 seconds.

Use Figure 3 and the equation:

Mean rate of reaction = _____ cm3/s

(2)

Describe how the rate of reaction changes between 0 and 160 seconds.

Use Figure 3.

AQA Chemistry GCSE - Rate of Reaction

_	
(2)	
(Total 17 marks)	

Q11.

A student investigated how temperature affects the rate of reaction between magnesium carbonate and dilute hydrochloric acid.

This is the method used.

- 1. Heat hydrochloric acid to 30 °C in a conical flask.
- 2. Add magnesium carbonate powder to the conical flask.
- 3. Measure the loss in mass of the flask and contents every 20 seconds for 140 seconds.
- 4. Repeat steps 1-3 with hydrochloric acid heated to 50 °C

(a)	Explain why the contents of the conical flask lose mass.

(2)

(b) The table below shows the student's results for hydrochloric acid at 30 °C

Time in seconds	Loss of mass in grams
0	0.00
20	0.26
40	0.48
60	0.67
80	0.82
100	0.91
120	0.96
140	0.99

Plot the data from the table aboveigure 1.

Draw a line of best fit.

Figure 1

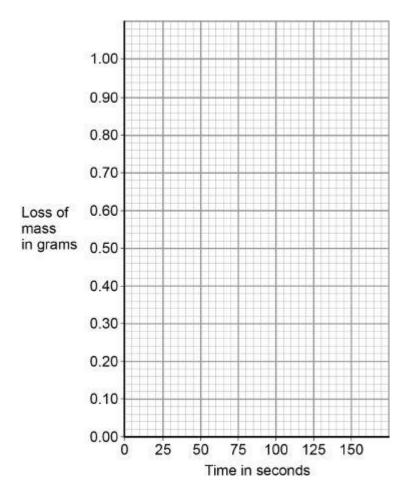
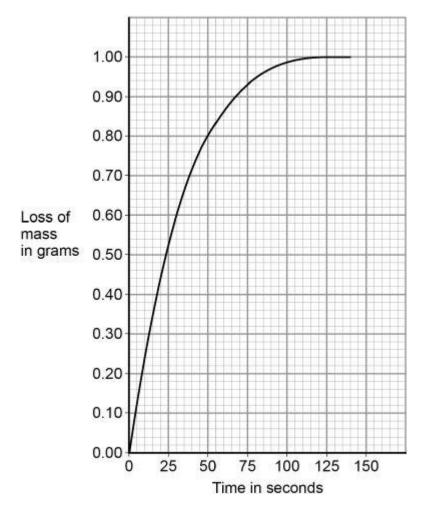



Figure 2 shows the student's results for hydrochloric acid at 50 $^{\circ}\text{C}$ Figure 2 (3)

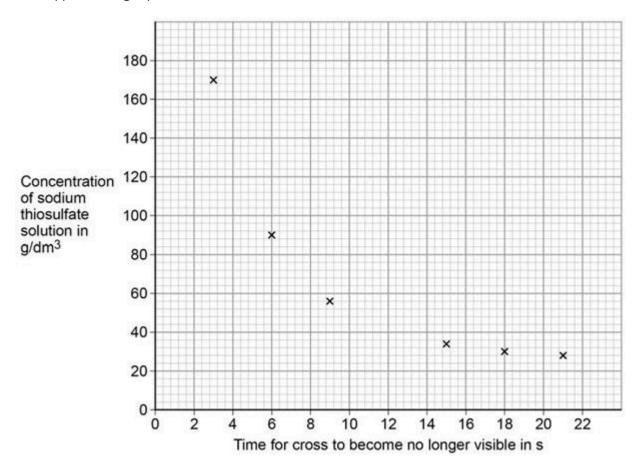
(c) Determine the rate of reaction at 50 °C when the loss of mass is 0.95 g Show your working on Figure 2. Give your answer to 2 significant figures.

Rate of reaction = g/s (4) (Total 9 marks)

Q12.

A student investigates the effect of concentration on the rate of reaction.

The student reacts sodium thiosulfate solution with dilute hydrochloric acid.


This produces a cloudy mixture.

	•
(a)	The cloudiness is produced by the formation of solid sulfur.
	How should sulfur be written in the chemical equation for this reaction?
	Tick (√) one box.
	S(aq) S(g) S(I) S(s) (1)
The	diagram shows some of the apparatus the student uses.
	Add dilute hydrochloric acid and start timing
	Sodium thiosulfate solution A cross drawn on paper
This	is the method used.
2. St 3. Ac 4. Ti	easure 40 cm3 sodium thiosulfate solution into a conical flask. and the flask on a piece of paper with a cross drawn on it. dd 10 cm3 of dilute hydrochloric acid to the flask. me how long it takes the cross to become no longer visible. epeat steps 1–4 twice more.
6. Re	epeat steps 1–5 with sodium thiosulfate solutions of different concentrations.
(b)	Which apparatus could be used to measure 10 cm3 of dilute hydrochloric acid?
	Tick (✔) one box.
	Beaker
	Boiling tube
	Measuring cylinder

	est tube	2 3			(4)
, D	opo lina fuana				(1)
	rawone line from e of variable	each type of		n of the variable	variable
.,,,,	or variable		Bescriptio	ii oi tile variable	
				ition of sodium ate solution	
Depe	endent variable		Size of	conical flask	
			Size of cross	drawn on paper	
Indep	endent variable			ss to become no er visible	
			Volume of h	ydrochloric acid	
					(2)
•	ne student draws a uggest why this m		·		
	ne table shows the oncentration of 12 g			n thiosulfate solu	(1) tion with
	oncentration of 12	g/dm3			
	oncentration of 12	g/dm3	esults for sodiur		
	Time for c	g / dm3 ross to becon	esults for sodiur ne no longer visib	le in s	
´ cc	Time for c	g / dm3 ross to becon Trial 2 78	esults for sodiur ne no longer visib Trial 3	le in s Mean	
, cc	Time for c Trial 1 43	g / dm3 ross to becon Trial 2 78 the tabble.	esults for sodiur ne no longer visib Trial 3 41	le in s Mean X	
Ć CC	Time for c Trial 1 43 alculate value X in	g / dm3 ross to becon Trial 2 78 the tabble.	esults for sodiur ne no longer visib Trial 3 41	le in s Mean X	

(2)

(f) The graph shows some of the student's results.

Draw a smooth curve of best fit on the graph above.

(1)

(g) Another student does the same investigation.

Both students have a similar pattern in their results.

Which word describes investigations performed by different students, which give a similar pattern of results? Tick (\checkmark) one box.

Accurate	S S
Precise	
Reproducible	8

	Valid			
				(1)
(h)	The more concent taken for the cross Give two reasons v	s to become no lor	thiosulfate solution, t nger visible.	the less time is
	Tick (√) two boxes	5.		
	Particles are more	e spread out		
	Particles collide m	nore frequently		
	Particles have mo	ore energy		
	Particles move m	ore quickly		
	There are more pa	articles in a fixed v	olume	
				(2)
				(Total 11 marks)

Q13.

A student investigated the rate of reaction between marble chips and hydrochloric acid.

Figure 1 shows the apparatus the student used.

Bubbles of carbon dioxide

Bubbles of carbon dioxide

Bubbles of carbon dioxide

40 cm³ hydrochloric acid

20 g marble chips

Balance

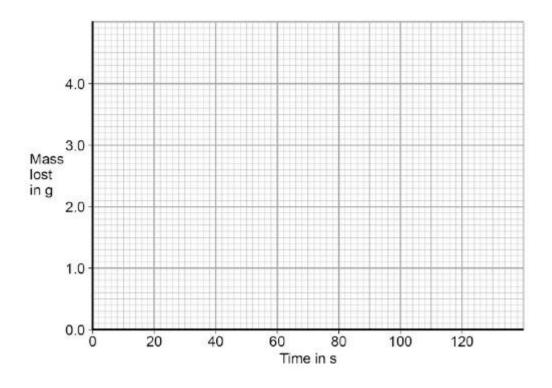
(a) What is A?

Tickone box.

cotton wool	
limestone	
poly(ethene)	
rubber bung	

(b) Table 1 shows the student's results for one investigation.

Table 1


(1)

Time	Mass lost
in s	in g
0	0.0
20	1.6
40	2.6
60	2.9
80	3.7
100	4.0
120	4.0

On Figure 2:

- Plot these results on the grid. Draw a line of best fit.

Figure 2

(c) Use Figure 2 to complet Eable 2.

Table 2

Mass lost after 0.5 minutes	g
Time taken to complete the reaction	s

(2)

(3)

(d) The equation for the reaction is:

$$2HCI(aq) + CaCO3(s) \rightarrow CaCI2(aq) + H2O(I) + CO2(g)$$

Explain why there is a loss in mass in this investigation.

(2)

(e) Another student investigated the rate of a different reaction.

Table 3 shows the results from the different reaction.

Table 3

(f)

(g)

area.

The

energy.

particles

have

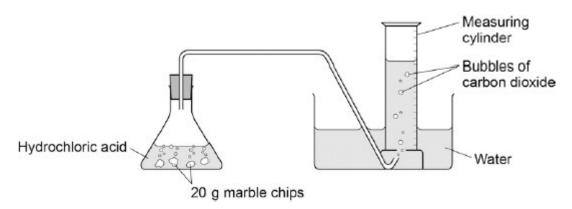
Rate of R	eaction							
Mass	lost when lete	the reaction	was	9.85 (9			
Time	taken to c	omplete the	reaction	2 minute	es 30 ds			
Calcul	ate the me	ean rate of th	ne reac	ction usin	g Tabl	e 3 anc	the equat	ion:
		mean rate	e of rea	mas ction time	ss lost taken	in g in s		
Give	your	answer	to	two	dec	imal	places.	
							_ _	
		Mean rate	of reac	tion =			g/s	(2)
The sti	ıdent mea	sured the cl	nande	in mass o	fthe r	eactan	ts	. ,
		chips and h					 	
								(2)
rate of The stu tempe	reaction. udent pred rature wa	planned to dicted that t s increased. s why the sto	he rate	e of reacti	on wo	uld inc		
Tick t	wo boxes.				_			
The p	articles are	e more conc	entrate	ed.				
The p	oarticles h	nave a gre	ater					
mass.	The pa	rticles have	e a					
larger	surface							

Page 38 of 48

more

The particles move faster.

(2)
(Total 14 marks)


Q14.

Marble chips are mainly calcium carbonate (CaCO3).

A student investigated the rate of reaction between marble chips and hydrochloric acid (HCI).

Figure 1 shows the apparatus the student used.

Figure 1

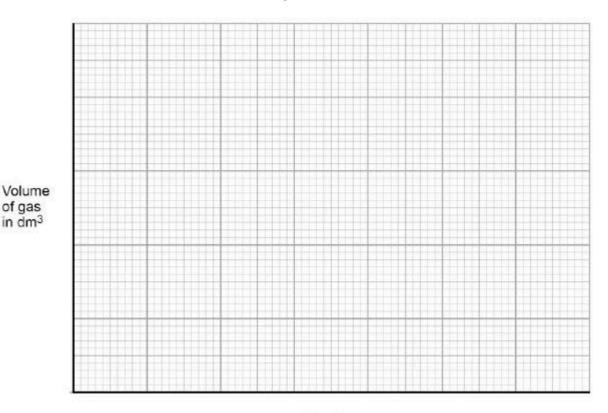
(a) Complete and balance the equation for the reaction between marble chips and hydrochloric acid.

(2)

(b) The table below shows the student's results.

Time in s	Volume of gas in dm3
0	0.00
30	0
60	0.030
90	0.04
120	6
150	0.052
180	0.065
210	0.070
	0.076

Page 39 of 48⁰⁷⁹


240	0.08
270	0
	0.08

On Figure 2:

Ο

- · Plot these results on the grid.
- Draw a line of best fit.

Figure 2

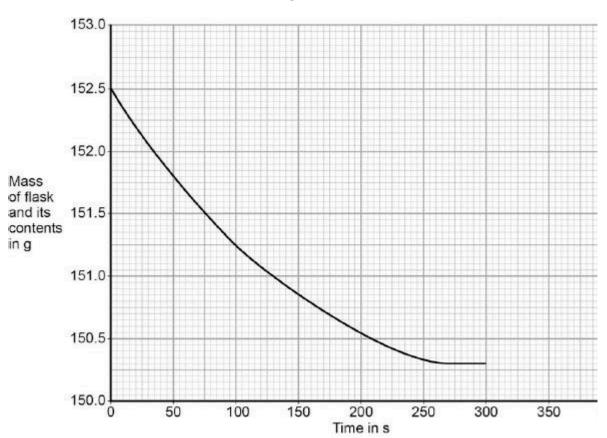
Time in s

(4)

(c) Sketch a line on the grid in Figure 2 to show the results you would expect if the experiment was repeated using 20 g of smaller marble chips.

Label this line A.

(2)


d)	Explain, in terms of particles, how and why	
	changes during the reaction of calciu hydrochloric acid.	m carbonate with

		(4)

(e) Another student investigated the rate of reaction by measuring the change in mass.

Figure 3 shows the graph plotted from this student's results.

Figure 3

Use Figure 3 to calculate the mean rate of the reaction up to the time the reaction is complete.

Give your answer to three significant figures.

	C
g/	,
Use Figure 3 to determine the rate of reaction at 150 seconds.	
Show your working on Figure 3. Give your answer in standard	ł
form.	-
Rate of reaction at 150 s = g / s	

(4)

(Total 20 marks)

Q15.
A student investigated the effect of temperature on the rate of a reaction.
Figure 1 shows an experiment.

Figure 1

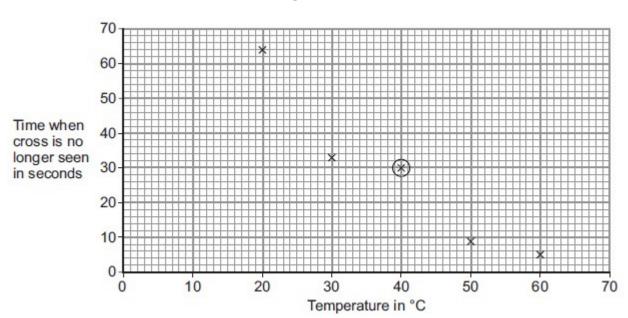
The student:

- put 50 cm3 sodium thiosulfate solution into a conical flask
- heated the sodium thiosulfate solution to the required temperature
- · put the flask on a cross drawn on a piece of paper
- added 5 cm3 dilute hydrochloric acid and started a stopclock
- stopped the stopclock when the cross could no longer be seen
- · repeated the experiment at different temperatures.

The equation for the reaction is:

$$Na_2S_2O_3(aq)$$
 + $2HCl(aq)$ \longrightarrow $2NaCl(aq)$ + $H_2O(l)$ + $SO_2(g)$ + $S(s)$ sodium hydrochloric sodium water sulfur thiosulfate acid chloride dioxide

(a) Which product is a gas?


(1)

(1)

(b) Figure 2 shows the results of this experiment at five different temperatures.

The circled result point is anomalous.

Figure 2

(i) Draw a line of best fit on Figure 2 to show how the reaction time varied with reaction temperature.

(ii) Give a possible reason for the anomalous result at 40 °C.

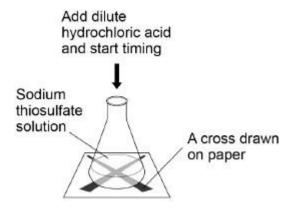
		(1)
(iii)	The reaction at 20 °C produced 0.32 g of sulfur in 64 seconds.	
	Calculate the rate of the reaction at 20 °C using the equation:	
	Rate of reaction = mass of sulfur time	
	Rate of reaction = time	
	Rate of reaction = grams per second	
		(2)
(i∨) (Give two reasons why the rate of the reaction increases as the temperature increases.	
	Tick (✔) two boxes.	
	The particles move faster.	
	The particles collide less often.	
	All the particles have the same	
	energy.	
	The particles collide with more energy.	
	The number of particles increases.	
		(0)
		(2)
(∨)	Use the correct answer from the box to complete the sentence.	,
	activation collision exothermic	
	The minimum amount of energy particles must have to react is	called
	the energy.	
		(1)
	(Total 8 ma	arks)

Q16.

When sodium thiosulfate solution reacts with dilute hydrochloric acid, the solution

becomes cloudy.

The equation for the reaction is:


Na2S2O3(aq) + 2 HCl(aq) → 2 NaCl(aq) + SO2(g) + H2O(l) + S(s)

(a) Why does the solution become cloudy?

(2)

Some students used this reaction to investigate the effect of concentration on rate of reaction.

The diagram shows the apparatus used.

This is the method used.

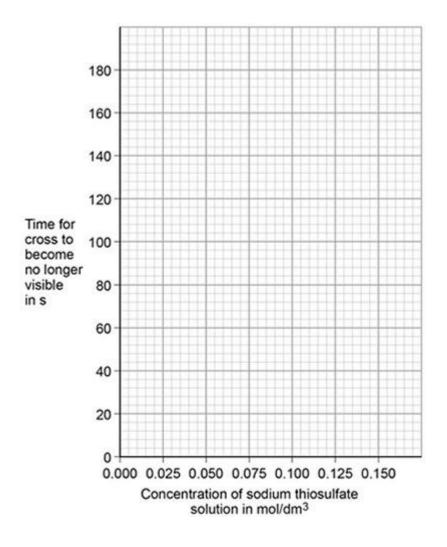
- 1. Measure 25 cm3 sodium thiosulfate solution into a conical flask.
- 2. Stand the conical flask on a cross drawn on paper.
- 3. Add 10 cm3 of dilute hydrochloric acid.
- 4. Time how long it takes the cross to become no longer visible.
- 5. Repeat steps 1-4 with sodium thiosulfate solutions of different concentrations.
- The students used a measuring cylinder to measure 25 cm3 of sodium (b) thiosulfate solution.

Suggest a more accurate way of measuring 25 cm3 of sodium thiosulfate solution.

(1)

(c)	Name one contro	I variable the st	udents should	use in this	investigation.
(\smile)	Tarrie orie correre	I Valiable tile st	aaciito oila	ase in this	1111000019001011.

(1)


The table shows the students' results.

Concentration of sodium thiosulfate solution in mol / dm3	Time for cross to become no longer visible in s
0.020	170
0.04	90
0	82
0.06	42
0	34
0.08	30
0	28

0.100

Draw a line of best fit.

⁽d) Plot the data from the table above on the graph below. 0.120

(3)

The students repeated the investigation two more times.

They obtained similar results each time.

(e)	What word describes an investigation by the same students which	i gives
	similar results each time?	

(1)

f)	Describe how the students can use their results to impraccuracy of the investigation.	ove the

(2)

(g) The students analysed their results to give a conclusion and an

(h)

explanation for their investigation. Conclusion: 'The hig	her the
concentration, the lower the rate of reaction.' Explana	tion: 'At
higher concentrations, the particles have more energy, so they are, moving faster. Therefore the collisions are energetic.	e more
The students are not correct.	
Give a correct conclusion and explanation for the results of investigation.	the
Conclusion	
	_
	-
Explanation	
	-
	-
	_
	(0)
	(3)
A solution containing 0.18g of sodium thiosulfate read dilute hydrochloric acid in 2 minutes.	ts with
Calculate the mean rate of reaction in g / s.	
Give your answer in standard form.	
	-
	-
	-
	-
Mean rate of reaction =	g/s
	(3) (Total 16 marks)