All questions are for separate science students only

Q1.

This question is about chemical cells and batteries.

(a) Three different types of battery can be used to power a TV remote control.The table below gives information about these batteries.

	Zinc-carbon battery	Alkaline battery	Nickel-metal hydride battery
Cost of battery in £ (pounds)	0.17	0.50	1.50
Rechargeable?	No	No	Yes
Time before needing to replace or recharge in month	s 5	12	8

Give one advantage of each type of battery.

Zinc-carbon _____

Alkaline _____

Nickel-metal hydride _____

(1)

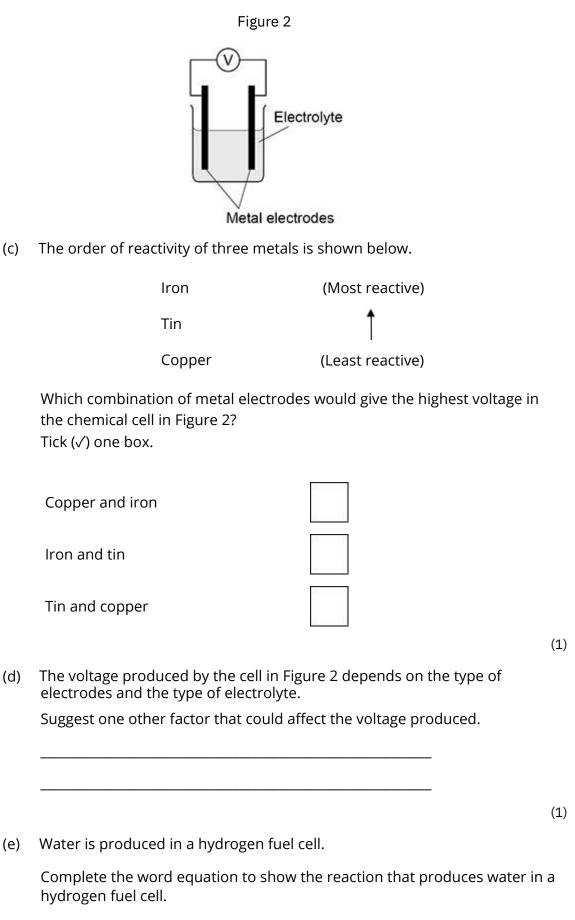

(b) Figure 1 shows a symbol printed on batteries.

Figure 1

This symbol shows that batteries should not be put in household waste. Suggest why batteries should not be put in household waste.

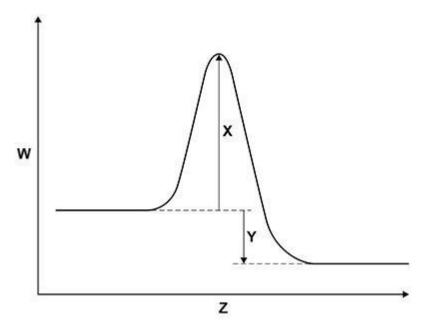
Figure 2 shows a chemical cell.

 $_$ + $_$ → water

(2) (Total 8 marks)

Q2.

This question is about chemical reactions and energy.


Hydrogen reacts with oxygen to produce water.

This reaction releases energy.

(a) Complete the word equation for the reaction.

hydrogen + oxygen
$$\rightarrow$$
 _____ (1)

(b) The graph below shows a reaction profile for the reaction between hydrogen and oxygen.

What do the labels W, X, Y and Zrepresent?

Choose answers from the box.

	activation en	ergy	energy	overall energy change	
	products		progress of reaction	reactants	
W					
Х					
Y					
Ζ	_				

(c) The reaction between hydrogen and oxygen is used in a hydrogen fuel cell.
What is the reason for using this reaction in a fuel cell?
Tick (√) one box.

To produce a change of state				
To produce a potential difference				
To produce a temperature change				
		(1)		
A student investigated the voltage pro	oduced by a chemical cell.			
The student used different metals as the electrodes in the cell.				
The metals used were:				

- copper
- iron

(d)

magnesium.

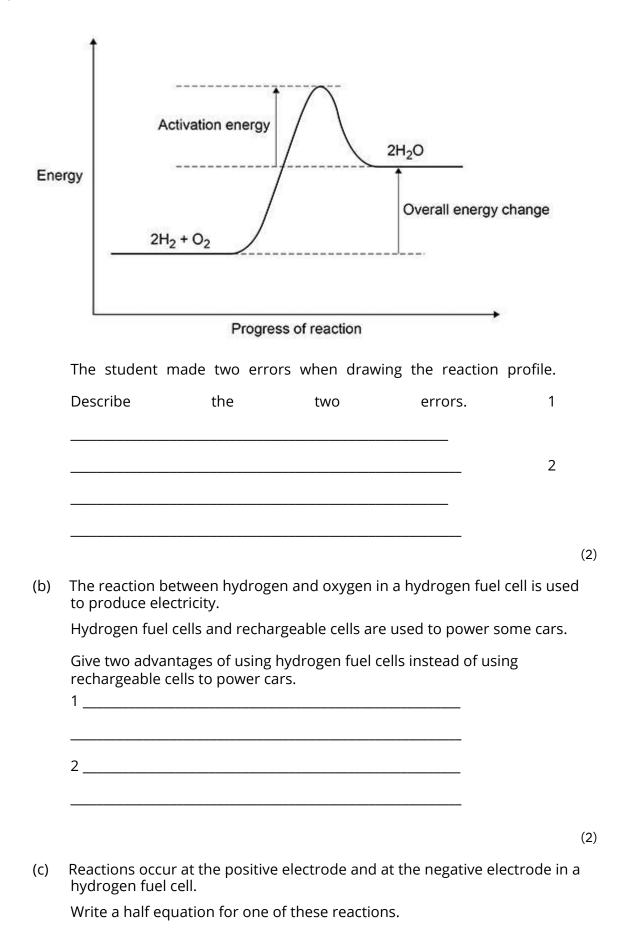
Which two metal electrodes would produce the greatest voltage when used in the chemical cell?

Give one reason for your answer.

Metals	and
--------	-----

Reason _____

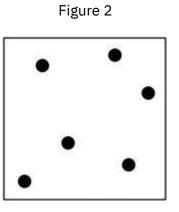
(2) (Total 8 marks)


Q3.

The reaction between hydrogen and oxygen releases energy.

(a) A student drew a reaction profile for the reaction between hydrogen and oxygen.

Figure 1 shows the student's reaction profile.


Figure 1

(e)

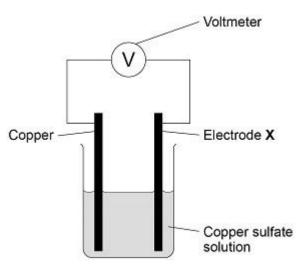
(f)

(d) The three states of matter can be represented by a simple particle model.Figure 2 shows a simple particle model for hydrogen gas.

Give two limitations of this simple particle model for hydrogen gas.

1	
າ	
2	
	(2)
The hydrogen gas needed to power a car for 400 km wou volume.	ld occupy a large
Suggest one way that this volume can be reduced.	
	(1)
The energy needed for a car powered by a hydrogen fuel km is 58 megajoules (MJ).	cell to travel 100
The energy released when 1 mole of hydrogen gas reacts 290 kJ	s with oxygen is
The volume of 1 mole of a gas at room temperature and	pressure is 24 dm3
Calculate the volume of hydrogen gas at room temperatuneeded for the car to travel 100 km	ure and pressure

Volume of hydrogen gas =	dm3
	(4)
	(Total 12 marks)


Q4.

This question is about chemical cells and batteries.

A student investigated the voltage produced by different chemical cells.

Figure 1 shows the apparatus.

This is the method used.

- 1. Use cobalt metal as electrode X.
- 2. Record the cell voltage.
- 3. Repeat steps 1 and 2 using different metals as electrode X.
- (a) Suggest two variables the student should keep the same to make the investigation valid.
 - 1_____

2_____

The following table shows the student's results.

Electrode X	Voltage of the cell in volts
cobalt	0.62
magnesium	2.71
zinc	1.10

(b) Write the three metals used for electrode X in order of reactivity.

Use the table above.

Most reactive _____

Least reactive	
----------------	--

(c) Copper is used as electrode X in Figure 1.

Predict the voltage of this cell.

Give one reason for your answer.

Voltage = _____ volts

Reason_____

(d) Describe how to make a 12 V battery using 1.5 V cells.

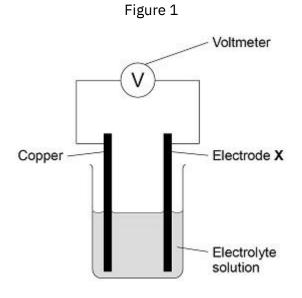
(2)

(2)

(2)

(1)

(e) Which is the most suitable use for a non-rechargeable cell?


	Tick ($^{\vee}$) one box.	
	Electric toy	
	Laptop computer	
	Mobile phone	
		(1)
(f)	Hydrogen fuel cells or rechargeable cells can be used to power electric vehicles.	
	Suggest one advantage and one disadvantage of using a hydrogen fuel cell compared with a rechargeable cell. Advantage of hydrogen fuel cell	
	Disadvantage of hydrogen fuel cell	
		(2)
	(Total 10 m	()

Q5.

This question is about chemical cells.

A student investigated the voltage produced by different chemical cells.

Figure 1 shows the apparatus.

This is the method used.

- 1. Use cobalt as electrode X.
- 2. Record the cell voltage.
- 3. Repeat steps 1 and 2 using different metals as electrode X.
- (a) Suggest two control variables used in this investigation. 1

2

(2)

The following table shows the student's results.

Electrode X	Voltage of cell in volts
cobalt	+0.62
copper	0.00
magnesium	+2.71
nickel	+0.59
silver	-0.46
tin	+0.48

(b) Write the six metals used for electrode X in order of reactivity.

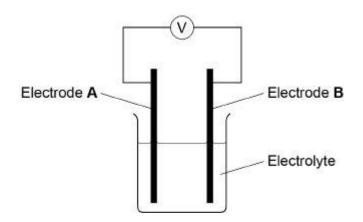
Use the table above.

Justify your order of reactivity.

Most reactive _____

Least reactive _____

Justification


(c)	Which of the following pairs of metals would produce the greatest voltage	
	when used as the electrodes in the cell?	
	Use the table above.	
	Tick (√) one box.	
	Magnesium and cobalt	
	Magnesium and tin	
	Nickel and cobalt	
	Nickel and tin	
(d)	Hydrogen fuel cells can be used to power different forms of transport.	
	Some diesel trains are being converted to run on hydrogen fuel cells.	
	A newspaper article referred to the converted trains as the new 'steam trains'. Suggest why.	

(2) (Total 9 marks)

Q6.

Chemical reactions can produce electricity.

(a) The diagram below shows a simple cell.

Which of these combinations would not give a zero reading on the voltmeter in the diagram above? Tick one box.

	Electrode A	Electrode B	Electrolyte			
	Copper	Copper	Sodium chloride solution			
	Zinc	Zinc	Water			
	Copper	Zinc	Sodium chloride solution			
	Copper	Zinc	Water			
					(1)	
Alkaline batteries are non-rechargeable.						
(b) W	/hy do alkaline bat	teries eventually	y stop working?			
					(1)	
(C)	Why can alkaline	batteries not be	recharged?		(_)	

Hydrogen fuel cells and rechargeable lithium-ion batteries can be used to power electric cars.

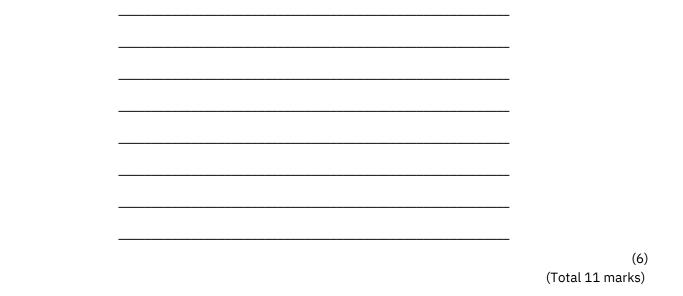
(1)

AQA Chemistry GCSE - Chemical Cells and Fuel Cells

(d) Complete the balanced equation for the overall reaction in a hydrogen fuel cell.

 \rightarrow

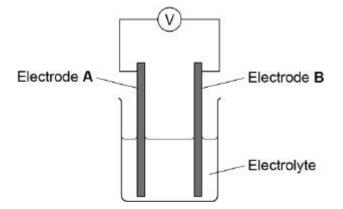
HQ


(2)

(e) The table below shows data about different ways to power electric cars.

	Hydrogen fuel cell	Rechargeable lithium-ion battery
Time taken to refuel or recharge in minutes Distance travelled before	5	30
refuelling or recharging in miles	Up to 415	Up to 240
Distance travelled per unit of energy in km Cost of refuelling or	22	66
recharging in £ Minimum cost of car in £	50	3
	60 000	18 000

Evaluate the use of hydrogen fuel cells compared with rechargeable lithium-ion batteries to power electric cars.


Use the table above and your own knowledge.

Q7.

A student investigated the voltage produced by simple cells.

The diagram shows the apparatus used.

The table shows the voltage produced with different metal electrodes.

Electrode A	Electrode B	Voltage in V
Copper	Copper	0.00
Copper	Iron	0.78
Copper	Magnesium	2.71
Copper	Tin	0.48
Copper	Zinc	1.10

(a) List the metals in the table in order of reactivity.

Most reactive _____

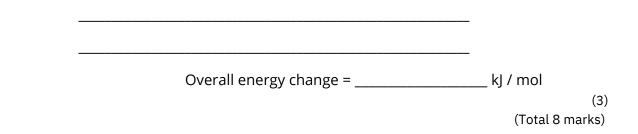
	-				
	- Least reactive	Copper			(2)
(b)	Batteries consist	of cells. Describe	how a 6.0 V battery	v can be made	
	from cel	ls of	voltage	1.5 V -	
				-	
				-	(2)
(c)	Why do non-	rechargeable cell	s stop producin	electricity? –	
				-	
				-	(2)
(d)	Complete the wo	rd equation for the	reaction in a hydrog	gen fuel cell.	
	hydrogen	+	→	water	(1)
(e)			gen fuel cell is seen	as non-polluting.	
	Use the equation				
				-	
	2			-	
				– (Total 9 ma	(2) arks)

Q8.

Cells contain chemicals which react to produce electricity.

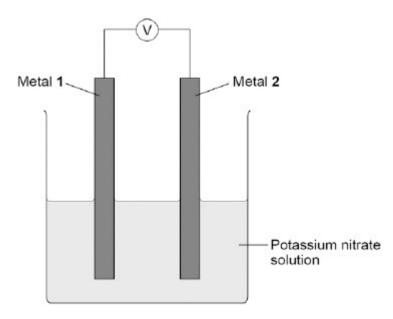
AQA Chemistry GCSE - Chemical Cells and Fuel Cells

(a)	Why	can	а	rechargeable	cell	be	recharged?	
(b)	Give t	wo facto	ors tha	t affect the vol	tage pro	duced b	y a cell. 1.	(1)
(-)							2.	
								(2)
(c)		e the half hydroge		ion for the reacti cell.	on occurr	ing at ar	electrode in or	าе
		H2	+	OH- → H	120	+ e-		(1)
(d)	Why is	the fuel	cell in	Question (c) des	scribed as	s an alka	line fuel cell?	
								(1)
(e)	Anothe	er type of	fuel ce	ell uses methanol	instead o	of hydrog	gen.	
	The dia	igram rej	oresent	ts the reaction in	this fuel o	cell.		


$$2H - C - O - H + 30 = 0 \longrightarrow 20 = C = 0 + 4H - O - H$$

The table shows the bond energies for the reaction.

	C–H	C-0	0-H	0=0	C=0
Bond energy in kJ / mol	412	360	464	498	805


Calculate the overall energy change for the reaction.

Use the diagram and the table above.

Q9.

A student investigated simple cells using the apparatus shown in the figure below.

- If metal 2 is more reactive than metal 1 then the voltage measured is positive.
- If metal 1 is more reactive than metal 2 then the voltage measured is negative.
- The bigger the difference in reactivity of the two metals, the larger the
- voltage produced.

The student's results are shown in the table below.

Metal 2 Metal 1	Chromium	Copper	Iron	Tin	Zinc
Chromium	0.0 V				
Copper	1.2 V	0.0 V			
Iron	0.5 V	not measured	0.0 V		
Tin	0.8 V	-0.4 V	0.3 V	0.0 V	
Zinc	0.2 V	-1.0 V	-0.3 V	-0.6 V	0.0 V

(a) The ionic equation for the reaction occuring at the zinc electrode in the simple cell made using copper and zinc electrodes is:

$$Zn \rightarrow Zn2++2e-$$

Zinc is oxidised in this reaction.

Give a reason why this is oxidation.

(b) Look at the table above. Which one of the metals used was the least reactive? Give a reason for your answer. Metal

Reason _____

(2)

(1)

(c) Predict the voltage that would be obtained for a simple cell that has iron as metal 1 and copper as metal 2.

Explain your answer.

(d)	Hydrogen fuel cells have been developed for cars.		
	Write a word equation for the overall reaction that takes pla hydrogen fuel cell.	ace in a	
(e)	Write the two half equations for the reactions that or electrodes in a hydrogen fuel cell.	cur at the	5
		(Total 9	ma