Mark schemes

Q1	(a)	(zinc-carbon)	cheap(est)		
		(alkaline) long	g(est) lasting	1	
		(nickel-metal <i>al</i>	hydride) rechargeable llow do not have to be thrown away	1	
	(b)	any one from • (metal / • (metal / • recyclin ig	: / alkaline waste) can be toxic / harmful / corrosive //ow (batteries) can ignite / explode / alkaline waste) could cause pollution in landfill sites ng would save resources more dangerous	1	
	(c)	copper and irc	on	1	
	(d)	any one from • temperation • concentiation ig al al al al	ature (of electrolyte / solution) tration (of electrolyte / solution) more type of electrode / electrolyte llow size / mass / length of electrode llow surface area of electrode llow distance between electrodes llow volume of solution / electrolyte	1	
	(e)	hydrogen <i>al</i>	llow H2	1	
		oxygen al	llow O2	1	[8]
Q2	(a)	water al do	llow H2O o not accept energy	1	
	(b)	W = energy		1	

	1	
r = overall energy change	1	
7 - prograss of reaction		
Z – progress of reaction	1	
(c) to produce a potential difference		
	1	
(d) magnesium and copper	1	
(the metals) have the largest difference in reactivity		
	1	۲O1
		[0]
Q3.		
(a) the activation energy should be from the reactants (line to the peak)		
ignore description of where the activation energy is on the diagram		
	1	
the products (line) should be below the reactants (line)		
or the products should have less energy than the reactants		
allow the product (line) is above the		
reactants (line) allow the products have more energy		
than the reactants allow the profile		
shows an endothermic reaction		
ignore the arrow for the overall energy change should point downwards		
	1	
(b) any two from: (hydrogen fuel cells)		
allow converse arguments for a rechargeable cell		
• no toxic chemicals to dispose of at the end of the cell's life		
• take less time to refuel (than to recharge rechargeable cells)		
 travel further before refuelling (than before recharging 		
rechargeable cells)		
allow has a greater range		
no loss of efficiency (over time)		
allow does not lose capacity / range in cold weather 2		

2

any one from: allow multiples
• $H2 \rightarrow 2 H++2 e-$ allow $H_2-2 e- \rightarrow 2 H+$
• $02 + 4H + 4e \rightarrow 2H20$ <i>allow H</i> ₂ + 2 OH - 2 e $\rightarrow 2H2O$
• H2 + 2 OH- → 2 H2O + 2 e-
• 02 + 2 H-20 + 4 e →4 0H-
 any two from: hydrogen is not shown as H2 / molecules particles are shown as spheres particles are shown as solid does not show the (weak) forces (between particles) does not show the movement / speed (of particles) is only two-dimensional
 any one from: under (higher) pressure allow increase concentration cool allow condense absorb / adsorb in a solid allow store as a liquid / solid allow develop more efficient engines

1

2

1

1

1

1

or (290 kJ =) 0.290 MJ

allow (58 MJ =) 58 000 000 J and (290 kJ =) 290 000 J

= 4800 (dm3)

alternative approach:

(58 MJ =) 58 000 kJ (1) (energy released per dm3 = $\frac{290}{24}$ =) 12.08333 (kJ/dm3) (1) 58000 (volume =) 12.08333 (1) allow correct use of an incorrectly converted or unconverted value of energy allow correct use of an incorrectly calculated energy released per dm3 = 4800 (dm3) (1)[12] Q4. (a) concentration (of solution / electrolyte) 1 temperature (of solution / electrolyte) ignore room temperature allow volume (of solution / electrolyte) allow size of electrodes allow distance between electrodes do not accept electrode X unqualified do not accept (measured) voltage 1 (b) (most reactive) magnesium allow Mg zinc allow Zn (least reactive) cobalt allow Co 1 0 (volts) (c) 1 two different metals are needed to produce a voltage dependent on voltage being given as 0 volts allow the two electrodes are the same metal

1

1

allow there is no difference in reactivity (between the electrodes)

(d)	connect cells (in series)	
	ignore putting cells together	1
	use $\left(\frac{12}{1.5}\right)_{8 \text{ cells}}$	1
(e)	electric toy	1
(f)	 (advantage) any one from: faster to refuel (than recharging) can travel further (before refuelling) allow lasts longer hydrogen can be renewable allow hydrogen is renewable produces a constant voltage no toxic chemicals released after disposal allow the only product is water ignore no emissions 	1
	 (disadvantage) any one from: hydrogen is made from fossil fuels hydrogen is made from non-renewable resources hydrogen is difficult to store hydrogen is flammable / explosive costs more to refuel (than recharging) costs more to manufacture <i>ignore expensive unqualified</i> not many hydrogen filling stations 	1 [10]
Q5. (a)	 any two from: temperature (of solution) ignore room temperature concentration of electrolyte / solution compound / ions in electrolyte / solution allow volume of electrolyte / solution allow size of electrode allow distance between electrodes 	

2

(b) order: (most reactive) magnesium cobalt nickel

do not accept electrode X unqualified do not accept (measured) voltage

	tin copper (least reactive) silver allow 1 mark for magnesium, cobalt, nickel, tin in order at top allow 1 mark for copper and silver in order at the bottom	2	
	justification: the higher the (positive) voltage, the more reactive (the metal) allow the most reactive (metal) has the highest voltage		
	silver has a negative voltage because silver is less reactive than	1	
(c)	magnesium and tin	1	
(C)		1	
(d)	(in a fuel cell) hydrogen is oxidised (to produce water) allow (in a fuel cell) hydrogen reacts with oxygen (to produce water)	1	
	water is produced / released as gas / vapour / steam if no other mark awarded, allow1mark for fuel cells produce water		
		1	[9]
Q6. (a)	copper, zinc, sodium chloride solution		
(b)	a reactant is used up	1	
	allow the reaction stops allow electrolyte / electrode / ions / metal / metal hydroxide / alkali for reactant		
		1	
(C)	the reaction is not reversible	1	
(d)	2H2 + O2→ 2H2O allow fractions / multiples allow 1 mark for O2	2	
(e)	Level 3: A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.	5-6	

Level 2: Some logically linked reasons are given. There may also be a simple judgement. 3-4

Level 1: Relevant points are made. This is not logically linked.

1-2

0

No relevant content

Indicative content

reasons why fuel cells could be judged as better

from the table	from other knowledge		
 time for refuelling a fuel cell is faster than recharging or a fuel cell does not need to be recharged a fuel cell has a greater range 	 hydrogen can be renewable if made by electrolysis using renewable energy lithium-ion batteries can catch fire produces only water Or no pollutants produced lithium-ion batteries may release toxic chemicals on disposal lithium-ion batteries (eventually cannot be recharged so) have a finite life 		

reasons why the lithium-ion battery could be judged as better

from the table	from other knowledge		
 lithium-ion uses energy more efficiently cost of lithium-ion car much less cost of recharging much less than refuelling with hydrogen 	 hydrogen is often made from fossil fuels so is not renewable charging points are more widely available than hydrogen filling stations hydrogen takes up a lot of space Or is difficult to store hydrogen can be highly flammable / explosive no emissions produced (catalyst in the hydrogen fuel-cell eventually becomes poisoned so) have a finite life 		

[11]

Q7.				
(a)	magnesium zinc iron tin		
		(copper)		
		three in the correct order scores 1 mark all correct scores 2 marks	2	
(b)	use 4 cells (each of voltage 1.5 V)	1	
		connect in series	1	
(c)	reaction stops	1	
		(because) one of the reactants is used up	1	
(d)	(hydrogen +) oxygen (→ water)	1	
(e)	 any two from: produces water water is not harmful / polluting does not produce carbon dioxide does not produce other named pollutant 		
		allow an answer of only produces water for 2 marks		
			2	[9]
08.				
(,	a)	the chemical reaction is reversible	1	
(b)	 any two from: type of electrode electrolyte concentration of electrolyte tomporature 		
			2	
(c)	H2 + 20H- \rightarrow 2H2O + 2e- allow multiples		
,	-D		1	
(d)	contains UH- ions	1	

(e)	(bonds broken)		
	((6 × 412) + (2 × 360) + (2 × 464) + (3 × 498)) = 5614	1	
	(bonds made) $((4 \times 805) + (8 \times 464)) = 6932$	1	
	(overall energy change) (6932 – 5614) = –1318 (kJ / mol) allow ecf from marking point 1 and / or marking point 2		
	an answer of 1318 (kJ / mol) scores 3 marks	1	
			[8]
Q9.			
(a)	(zinc has) lost electron(s) accept loss of electrons	1	
(b)	copper is the least reactive	1	
	because it gave the most negative voltage when it was metal 2 or it gave the biggest voltage with chromium		
	or it gave the most positive voltage when it was metal 1	1	
(c)	-0.7 V	1	
	The voltage with chromium and copper is 1.2 accept use of other cell pairings such as tin with copper and tin with iron	1	
	The voltage with chromium and iron is 0.5 and copper is less reactive (than iron)		
		1	
(d)	hydrogen + oxygen = water	1	
(e)	H2 → 2H+ + 2e-	1	
	02 + 4H+ + 4e- → 2H2O	-	
		1	[9]