Mark schemes

Q1. (a	a)	by filtration	
(t	b)	10 minutes per 2 cm on x-axis allow 5 minutes per 1 cm on x-axis	1
		all points plotted correctly allow a tolerance of ± ½ a small square allow 1 mark for 3 or 4 points plotted correctly	1
			2
		allow line of best fit drawn using incorrect plots	1
(0	c)	0.14 (g) allow ecf from question (b) allow a tolerance of ± ½ a small square	1
(0	d)	(copper sulfate solution) pink / orange / red / brown solid allow copper plating allow metal for solid	1
		(sodium chloride solution) bubbles / effervescence / fizzing if no other mark awarded allow1mark for copper and hydrogen	
(6	e)	toxic / poisonous (fumes)	1
	,	allow harmful / corrosive (fumes) ignore dangerous / deadly / lethal	1

(F)
V	7

Molten compound electrolysed	Product at the negative electrode	Product at the positive electrode
(zinc chloride)	zinc (1)	chlor <u>in</u> e (1)
potassium iodi <u>d</u> e	(potassium)	(iodine)

	allow 1 mark if zinc and chlorine the wrong way round	2 1	[12]
Q2. (a)	electrolysis uses electricity to produce a chemical reaction allow voltage for electricity allow potential difference for electricity allow (electrical) current for electricity allow electrolysis uses electricity to decompose a compound / electrolyte	1	

1

2

1 2

(but) cells use a chemical reaction to produce electricity

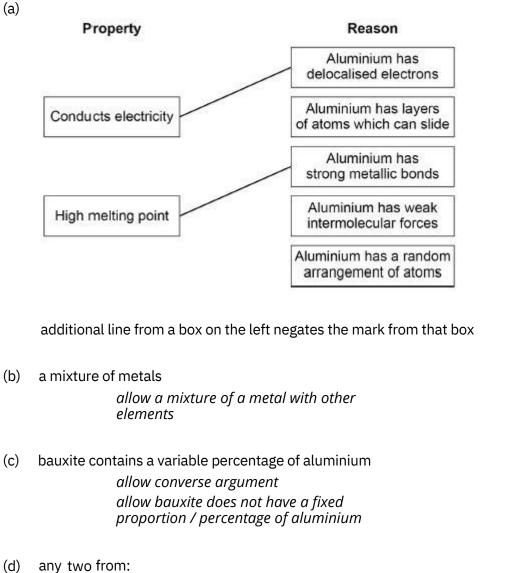
(b) $2Br \rightarrow Br2 + 2e \rightarrow$

allow multiples allow 1 mark for Br2and e–

(c)

Salt solution	Product at positive electrode	Product at negative electrode
(copper nitrate)	oxygen (1)	(copper)
(potassium iodide)	iodi <u>n</u> e (1)	hydrogen (1)

(d) filter the mixture


1 wash and dry the copper / residue 1 weigh the copper collected 1 add to the increase in mass of the electrode 1 (for given current) straight line through the origin (e) allow (for given current) when time doubles, mass doubles 1 (for given time) when current doubles, mass doubles with supporting (f) data 1

	(g)	copper ions are discharged (from the solution)	
		allow the solution becomes less concentrated	
		allow copper ions are removed (from the solution)	
		allow copper ions are used up (from the	
		solution)	1
	(h)	(number of moles = $\frac{0.24}{63.5}$ =)	
		3.78 × 10−3 or 0.00378	1
		(number of atoms =) 0.00378 × 6.02 × 1023	
		allow correct use of an incorrectly	
		calculated number of moles	1
		= 2.28 × 10 ²¹	
		allow a correct evaluation to 3	
		significant figures of an incorrect expression which involves only a mass	
		from the graph, the Ar of copper and the	
		Avogadro constant	1
			[17]
03			
Q3	(a)	(negative electrode) solid produced	
Q3		allow the electrode changes colour	
Q3		-	1
Q3		allow the electrode changes colour	1
Q3		allow the electrode changes colour ignore metal produced	
Q3	(a)	allow the electrode changes colour ignore metal produced (positive electrode) bubbles / fizzing / effervescence ignore gas produced	1
Q3		allow the electrode changes colour ignore metal produced (positive electrode) bubbles / fizzing / effervescence	
Q3	(a)	allow the electrode changes colour ignore metal produced (positive electrode) bubbles / fizzing / effervescence ignore gas produced	1
Q3	(a)	allow the electrode changes colour ignore metal produced (positive electrode) bubbles / fizzing / effervescence ignore gas produced potassium nitrate hydrogen is not a metal allow hydrogen is a gas allow hydrogen is not a solid allow the products at both electrodes	1
Q3	(a)	allow the electrode changes colour ignore metal produced (positive electrode) bubbles / fizzing / effervescence ignore gas produced potassium nitrate hydrogen is not a metal allow hydrogen is a gas allow hydrogen is not a solid allow the products at both electrodes are gases allow the product at the negative electrode is not potassium allow potassium is more reactive than	1
Q3	(a)	allow the electrode changes colour ignore metal produced (positive electrode) bubbles / fizzing / effervescence ignore gas produced potassium nitrate hydrogen is not a metal allow hydrogen is a gas allow hydrogen is not a solid allow the products at both electrodes are gases allow the product at the negative electrode is not potassium	1

AQA Chemistry GCSE - Electrolysis

(c)	(graphite) conducts (electricity) allow (graphite) has delocalised / free electrons	1	
	(graphite) is inert allow (graphite) is unreactive	1	
(d)	the ions move towards the positive electrode	1	
	the electrode attracts ions of the opposite charge <i>allow opposite charges attract</i>	1	[8]

Q4.

1

1

1

1

• danger of dam bursting

	 allow the lake (of mud) could overflow leakage of toxic substances from mud to environment water pollution damage to habitats visual pollution (dam) blocks light reduces the value of houses allow unpleasant smell 	2
(e)	10 / ten	2
		1
(f)	to lower the melting point of the mixture	1
(g)	oxygen must be in this order	1
	carbon	1
(h)	25 100 × 300 000	1
	=75 000	1
	= 7.5 ×104 (kg) allow correct conversion to standard form of an incorrectly calculated mass	1 1 [13]
Q5. (a)	CrO2-4 chromate ions moved to the positive electrode allow anode for positive electrode allow yellow (coloured) ions moved to the positive electrode	1
	(because) opposite charges attract allow (because) negative ions are attracted to the positive electrode	,
(b)	water ignore copper chromate solution	1

(c) copper ions gain two electrons

	allow Cu2+ for copper ions allow 1 mark for copper ions gain electrons or allow 1 mark for copper ions are reduced do not accept copper ions are oxidised	2	
	(to) form copper (atoms) allow Cu for copper (atoms) the equation: $Cu2+ + 2e- \rightarrow Cu$ scores 3 marks	1	
(d)	(negative electrode) hydrogen allow H2	1	
	(positive electrode) iodine allow I2	1	[8]
Q6. (a)	mixture has a lower melting point (than aluminium oxide) allow cryolite lowers melting point (of aluminium oxide) ignore boiling point do not accept cryolite is a catalyst	1	
	(so) less energy needed ignore cost	1	
(b)	aluminium ions gain electrons	1	
(c)	2 O2- → O2 + 4 e- allow multiples allow 1 mark for an unbalanced equation containing correct species	2	
(d)	the electrode reacts with oxygen	1	
	the electrode is carbon / graphite	1	
	(so) carbon dioxide is produced allow (so) the electrode / carbon /		

graphite is used up allow (so) the electrode / carbon / graphite is burned away ignore (so) the electrode / carbon / graphite is worn away ignore (so) the electrode / carbon / graphite is corroded

1

1

1

1

1

(e)

(f)

an answer of 941 (kg) scores 4 marks

(Mr of Al2O3 =) 102

$$\left(\frac{2000000}{102}\right)$$
 19608 (mol Al₂O₃)
allow correct calculation using
incorrectly calculated value of Mr of
Al2O3
 $\left(19608 \times \frac{2}{2}\right)$ 29412 (mol O₂)
allow correct calculation using
incorrectly calculated value of moles of
Al2O3
 $\left(\frac{29412 \times 22}{1000}\right)$ =) 941 (kg)
allow 941.1764706 (kg) correctly
rounded to at least 2 significant figures
allow correct answer using incorrectly
calculated value of moles of O2
alternative approach:
(2 Mr of Al2O3 =) 204 (1)
204 (kg of Al2O3 gives)
 $\frac{20000}{204} \times 96$ (kg of O₂)
or
 $\frac{2000000}{204} \times 96$ (g of O₂) (1)
= 941 (kg) (1)
hydrogen (gas) would be produced (instead of sodium)

(because) sodium is more reactive than hydrogen

1 (g) an answer of 50700 (dm3) scores 2 marks an answer of 50.7 (dm3) scores 1 mark $\left(\frac{150\ 000}{71}=\right)$ 2113 (mol of Cl₂) 1 or (volume of 1 g of Cl2 = $\frac{24}{71}$ =) 0.34 (dm3) $\left(\frac{150\ 000}{71} \ge 24\right) = 50700\ (dm^3)$ allow 50704.22535 (dm³ correctly rounded to at least 2 significant figures allow correct calculation using their calculated number of moles and/or calculated volume of 1 g 1 [16] Q7. (a) 3.6 (cm3) 1 (b) hydrogen line only 1 (c) both lines 1 (d) graphite has delocalised electrons 1 (e) cathode anode zinc (1) chlorine (1) do not accept chloride allow 1 mark if chlorine and zinc the wrong way around 1+1 hydrogen (1)promine (1) do not accept bromide allow 1 mark if bromine and hydrogen the wrong way around 1+1

[8]

Q8.		
(a)	solid (zinc chloride) does not conduct (electricity) or	
	zinc chloride needs to be in solution or molten	
	allow liquid / aqueous	1
	(because) ions connet move in the colid	
	(because) ions cannot move in the solid or	
	(as) ions can (only) move in liquid / solution	
	do not accept references to movement of electrons in zinc chloride	
		1
(b)	each carbon / atom forms 3 (covalent) bonds	
		1
	one electron per carbon / atom is delocalised	1
	(so) these electrons carry charge through the graphite or	
	(so) these electrons move through the structure	
	ignore carry current / electricity	1
	if no other mark scored, allow 1 mark	
	for delocalised / free electrons	
	allow free electrons for delocalised electrons	
(c)	use measuring cylinders (instead of test tubes)	
(0)	allow use burettes	
	allow use (gas) syringes	
	allow Hoffmann voltameter	1
	(because) test tubes cannot measure volume	
	or	
	(because) test tubes have no graduations / scale allow (so that) volume can be measured	
	anow (so that) volume can be measured	1
(d)	any three from:	
	• the volume of hydrogen collected is directly proportional to the	
	time	
	allow the (volume of) hydrogen is	
	collected at a constant / steady rate	
	• the rate of collection of hydrogen is 0.45 (cm3/min)	
	• up to 8 minutes chlorine is collected at an increasing rate	
	allow any value from 6 to 8 minutes	
	allow initially chlorine is collected at an	

increasing rate

after 8 minutes the rate of collection of chlorine is the same as that of hydrogen

allow any value from 6 to 8 minutes

or

after 8 minutes the rate of collection of chlorine is 0.45 (cm3/min)

allow after 8 minutes the (volume of) chlorine is collected at a constant / steady rate if neither bullet point 3 nor bullet point 4 is awarded allow 1 mark for chlorine is collected slowly up to 8 minutes and then more quickly allow any value from 6 to 8 minutes

3

1

1

1

1

(e) chlorine reacts with water or chlorine dissolves (in the solution).

$$(volume =) \frac{6.6}{1000} (dm^3)$$

(f)

or 0.0066 (dm3) allow 6.5 (cm3) for 6.6 (cm3)

$$(moles =) \frac{0.0066}{24}$$
allow use of incorrect volume from step 1

= 2.75 × 10-4 (mol)

allow 2.8 × 10–4 (mol) allow answer from incorrect calculation given in standard form alternative approach for marking points 1 and 2 24 dm3 = 24 000 cm3 (1)

$$(moles =) \frac{6.6}{24\,000} (1)$$

an answer of 2.75 × 10−4 (mol) or 2.8 × 10−4 (mol) scores 3 marks an answer of 0.000275 / 0.00028 / 2.75 × 10−1 / 2.8 × 10−1 (mol) / scores 2

		marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps		[10]
Q9.	(a)	(diagram) complete circuit with power supply	1	
		test solution in beaker or other appropriate apparatus	1	
		electrodes allow carbon, platinum or inert electrodes	1	
		(independent variable) salt solutions (with different metal ions)	1	
		(observation) solid / metal deposit on the negative electrode	1	
	(b)	(sometimes) hydrogen is produced	1	
		(because) the metal is more reactive than hydrogen	1	
	(c)	chlorine	1	
		oxygen	1	[9]
Q10				
	(a)	The forces between iodine molecules are stronger	1	
	(b)	anything in range +30 to +120	1	
	(c)	Brown	1	
	(d)	$2 \text{ I-} + \text{Cl}2 \rightarrow \text{I}2 + 2 \text{ Cl-}$	1	
	(e)	It contains ions which can move	1	

(f)	h	hydrogen iodine	1	[6]
Q11.				
(a)	e	electricity <i>allow an electric current</i>		
			1	
(b)	((i) chlorine/Cl2		
		do not accept chloride	1	
	((ii) (zinc ions are) positive		
	,	ignore to gain electrons		
			1	
		and (opposite charges) attract	1	
	((iii) reduction		
			1	
(c)	((i) in alloy:		
		accept converse		
		different sized atoms/particles		
		or		
		no layers/rows		
		accept layers distorted	1	
		so cannot slide	-	
		So carnot side	1	
	((ii) shape memory (alloys)		
		accept smart	1	
				[8]
Q12. (a)	r	magnesium loses two electrons and chlorine gains one electron		
	•	accept magnesium loses electrons and chlorine		
		gains electrons for 1 mark ignore oxidation and reduction		
		-0	2	
	С	one magnesium and two chlorines		

accept MgCl2

1

	or	e gas structure t electrons in the outer shell	
		accept full outer shell (of electrons)	
	or		
	(elec or	ctrostatic) attraction between ions	
	form	ns ionic bonds	
		do not accept covalent bonds	1
		reference to incorrect particles or incorrect bonding or incorrect structure = max 3	·
(b)	(i)	because ions can move ignore ions attracted do not accept molecules / atoms moving do not accept incorrect reference to electrons moving	1
		(and ions move) to the electrodes or	·
		(and ions) carry charge	1
		accept converse for solid	
	(ii)	magnesium (ions) attracted (to the electrode)	1
		so magnesium ions gain electrons accept magnesium ions are reduced ignore oxidised	1
		2 electrons accept a correct half equation for 2ndand 3rd marking points	
	(iii)	hydrogen allow H2	1
	(iv)	magnesium is more reactive than hydrogen accept converse	

allow magnesium is high in the reactivity series or

	magnesium is very/too reactive. do not accept magnesium ions are more reactive than hydrogen ions	
		1
	(v) $2 \text{ Cl-} \rightarrow \text{Cl2} + 2\text{e-}$	
	must be completely correct	1
(c)	layers (of particles/atoms/ions)	
	(particles/atoms/ions/layers) can slide	1
		1
	any mention of intermolecular / weak bonds/forces = max 1	
		[14]