Mark schemes

Q1.
(a) $\mathrm{H}+$
(b) neutralisation
(c) $\mathrm{H} 2 \mathrm{SO} 4+2 \mathrm{KOH} \rightarrow \mathrm{K} 2 \mathrm{SO} 4+2 \mathrm{H} 2 \mathrm{O}$
allow multiples
(d) 14
(e) pipette
(f) add potassium hydroxide (solution) to the (conical) flask
add (a few drops of) indicator
add the (sulfuric) acid (from the burette)
until the colour (of the indicator) changes
read the volume from the burette

Q2.
(a) 48 (cm3)
(b) (change in $\mathrm{y}=) 70(\mathrm{~cm} 3)$
(change in $x=$) 0.4 (g)
(gradient $=$) $\frac{70}{0.4}$
allow correct use of incorrectly derived values for change in y and / or change in x
$=175(\mathrm{~cm} 3 / \mathrm{g})$
(c) hydrochloric acid
(d) carbon dioxide
(e) to evaporate water
(f) using a (boiling) water bath
or
using an electric heater

Q3.
(a) potassium chloride
allow KCl
(b) $\mathrm{H}++\mathrm{OH}-\rightarrow \mathrm{H} 2 \mathrm{O}$ ignore state symbols
(c) copper carbonate and copper oxide only
(d) (Step 2) to speed up the reaction
(Step 5) to make sure all the (hydrochloric) acid reacts
(Step 6) to remove the excess magnesium oxide ignore to remove impurities
(e) using a (boiling) water bath
or
using an electric heater
(f) $\quad\left(\right.$ moles $\left.\mathrm{Fe}=\frac{14}{56}=\right) 0.25(\mathrm{~mol})$
(moles $\mathrm{Cl} 2=\frac{3}{2} 2 \times 0.25=$) $0.375(\mathrm{~mol})$ allow correct use of an incorrectly calculated number of moles of Fe
(volume $\mathrm{Cl} 2=24 \times 0.375)=9.0(\mathrm{dm} 3)$
allow correct use of an incorrectly calculated number of moles of Cl2

Q4.
(a) a dilute solution of a strong acid
(b) $1.0 \mathrm{~mol} / \mathrm{dm} 3$ hydrogen chloride solution
(c) any two from:

- swirl (the solution)
- white tile (under the flask)
- add (ethanedioic) acid dropwise (near the endpoint)
- repeat and calculate mean
(d) $\quad($ concentration $=90 \times 0.0480=)$ 4.32 (g/dm3)

$$
\begin{aligned}
&\left(\text { mass }=4.32 \times \frac{250}{1000}\right)=1.08(\mathrm{~g}) \\
& \begin{array}{l}
\text { allow correct use of an incorrectly } \\
\text { calculated value of concentration in } \\
g / d m 3
\end{array}
\end{aligned}
$$

alternative approach:

```
\(\left(\right.\) moles \(\left.=0.0480 \times \frac{250}{1000}=\right)\)
0.012 (mol) (1)
\((\) mass \(=0.012 \times 90)\)
\(=1.08(\mathrm{~g})(1)\)
```

allow correct use of an incorrectly
calculated value of number of moles
(e) $\quad\left(\right.$ moles $\left.\mathrm{H} 2 \mathrm{C} 2 \mathrm{O} 4=\frac{15.0}{1000} \times 0.0480\right)$
$=0.00072(\mathrm{~mol})$
(moles $\mathrm{NaOH}=$
moles $\mathrm{H} 2 \mathrm{C} 2 \mathrm{O} 4 \times 2=$)
0.00144 (mol)
allow correct use of an incorrectly calculated value of number of moles of H2C2O4
$\left(\right.$ concentration $\left.=\frac{0.00144}{25.0} \times 1000\right)$
$=0.0576(\mathrm{~mol} / \mathrm{dm} 3)$
allow 0.058 ($\mathrm{mol} / \mathrm{dm} 3$)

> allow correct use of an incorrectly calculated value of number of moles of NaOH
alternative approach:
$\frac{\text { volume } \times \operatorname{conc}(\text { acid })}{\text { volume } \times \operatorname{conc}(\mathrm{NaOH})}=\frac{1}{2}(1)$
allow inverse
(conc $\mathrm{NaOH}=$)
$2 \times \frac{15.0 \times 0.0480}{25.0}$
allow correct use of incorrect mole ratio
$=0.0576$ ($\mathrm{mol} / \mathrm{dm} 3$) (1)

Q5.
(a) nitric acid
(b) zinc oxide
(c) magnesium bromide
(d) (from 0) to 20 cm 3 the pH increases (gradually) allow a tolerance of $1 \mathrm{~cm}^{3} \mathrm{on}$ volumes allow a tolerance of 0.2 on pH values allow increase from pH 1 to pH 3
at 20 cm 3 the pH changes from pH 3 to pH 11 allow sudden / steep increase at 20 cm 3 allow sudden / steep increase from pH 3 to pH 11
from 20 cm 3 the pH increases (gradually)
allow (gradual) increase from pH 11
if no other marks awarded allow 1 mark for a description of the three stages with no values used.
(e) $20(\mathrm{~cm} 3)$
allow 20.0 (cm3)
(f) red
(g)

$$
\begin{aligned}
& \frac{0.06}{25(.0)} \times 100 \\
& =0.24(\%)
\end{aligned}
$$

(h) (pipette) measures volume more accurately
or
(pipette has a) smaller (percentage) uncertainty
allow (pipette is) more accurate

Q6.
(a) $\mathrm{H}+$
(b) hydrochloric (acid)
allow HCl
water
allow H2O
(c) burette
do not accept biuret
(d) 27.6 (cm3)
allow 27.60 (cm3)
(e) Level 3: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

Level 1: The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content
allow converse using acid added to alkali

Key steps

- measure the volume of acid
- add indicator to the acid
- add sodium hydroxide solution
- until the colour changes
- record volume of sodium hydroxide solution added
- repeat procedure with the other acid

Use of results

- compare the two volumes of sodium hydroxide solution to find which sample P or Q is more concentrated

Other points

- pipette to measure volume of acid
- use a few drops of indicator
- swirl
- use a white tile
- rough titration to find approximate end point
- add dropwise near the endpoint
- read volume from bottom of meniscus
- repeat and take a mean

Q7.
(a) any one from:

- metal
- (metal) hydroxide allow ammonium hydroxide
- (metal) carbonate allow ammonium carbonate
- alkali
allow soluble base allow ammonia
allow named example
allow correct formula
ignore base
(b) $\mathrm{Ca}(\mathrm{NO} 3) 2$
allow $\mathrm{Ca} 2+(\mathrm{NO}-3) 2$
(c) Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.

Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.

No relevant content

Indicative content

- use magnesium oxide and sulfuric acid
- add sulfuric acid to a beaker
- warm sulfuric acid
- add magnesium oxide
- stir
- continue adding until magnesium oxide is in excess
- filter
- using a filter paper and funnel
- to remove excess magnesium oxide
- heat solution in an evaporating basin
- to crystallisation point
- leave to crystallise
- pat dry with filter paper
credit may be given for diagrams

Q8.
(a) (strong because) completely ionised (in aqueous solution)
ignore pH
allow dissociated for ionised
do not accept hydrogen is ionising do not accept H^{+}are ionised
(dilute because) small amount of acid per unit volume
ignore low concentration
(b) 5.0
allow 5
(c) (titre):
chooses titrations 3, 4, 5
average titre $=22.13(\mathrm{~cm} 3)$
allow average titre $=22.13(3 . .$.$) (cm3)$
allow a correctly calculated average from an incorrect choice of titrations
(calculation):
(moles $\mathrm{NaOH}=$
$\frac{22.13}{1000} \times 0.105=0.002324$)
allow use of incorrect average titre from step 2
(moles $\mathrm{H} 2 \mathrm{SO} 4=$
$1 / 2 \times 0.002324=) 0.001162$
allow use of incorrect number of moles from step 3
(concentration $=$
$\frac{0.001162}{25} \times 1000$)
$=0.0465(\mathrm{~mol} / \mathrm{dm} 3)$
allow use of incorrect number of moles from step 4
alternative approach for step 3, step 4 and step 5
$\frac{2}{1}=\frac{22.13 \times 0.105}{25.0 \times \text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4}}$ (1)
(concentration $\mathrm{H} 2 \mathrm{SO} 4=$) $\frac{22.13 \times 0.105}{25.0 \times 2}$
$=0.0465$ ($\mathrm{mol} / \mathrm{dm} 3$) (1) an answer of 0.046473 or 0.04648 correctly rounded to at least 2 sig figs scores marking points 3, 4 and 5 an answer of 0.092946 or 0.09296 or 0.185892 or 0.18592 correctly rounded to at least 2 sig figs scores marking points 3 and 5 an incorrect answer for one step does not prevent allocation of marks for subsequent steps
(d) pipette measures a fixed volume (accurately)
(but) burette measures variable volume
allow can measure drop by drop
(e) $($ moles $=) \frac{30}{1000} \times 0.105$
or 0.00315 (mol)
or
(mass per dm3 =) 0.105×40
or 4.2 (g)
$\left(\right.$ mass $\left.=\frac{30}{1000} \times 0.105 \times 40\right)$
$=0.126(\mathrm{~g})$
an answer of 0.126 (g) scores 2 marks
an answer of $126(g)$ scores 1 mark an incorrect answer for one step does not prevent allocation of marks for subsequent steps

Q9.
(a) $4 \mathrm{Na}+\mathrm{O} 2 \rightarrow 2 \mathrm{Na} 2 \mathrm{O}$ allow multiples
(b) (sodium) gains oxygen
(c) purple
(d) aluminium chloride
(e) Level 2 (3-4 marks):

Relevant reasons are identified, given in detail and logically linked to form a clear account.
Level 1 (1-2 marks):
Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.
Level 0

No relevant content
Indicative content
conclusion 1

- $\quad \mathrm{pH}$ values above 7 are alkaline
- \quad sodium oxide, calcium oxide and magnesium oxide do form alkaline
- solutions (so correct for those)
- not all metal oxides form solutions (so incorrect for zinc oxide)
conclusion 2
- $\quad \mathrm{pH}$ values below 7 are acidic
- carbon dioxide, sulfur dioxide and phosphorus oxide do form acidic solutions (so correct for those)
- not all non-metal oxides form solutions (so incorrect for silicon oxide)]
(f) metal oxides produce alkaline solutions if they dissolve in water allow Inark for most metal oxides produce alkaline solutions

Q10.
(a) fill burette with sodium hydroxide
add sodium hydroxide from the burette to the hydrochloric acid and indicator
stop when colour changes
measure volume used from burette
plus any two from:

- stand flask on white tile
- swirl
- add dropwise near the endpoint
- repeat
(b) filtration
(c) evaporate some of the solution and leave to cool
or
heat with an electric heater

Q11.
(a) heat with a water bath
or
heat with an electric heater
or
allow to evaporate / crystallise at room temperature
(b) to make sure that all the iodine reacts
allow so can see the reaction is complete
(as) excess iodine would remain in solution
(so) iodine could not be filtered off
allow (whereas) excess zinc could be filtered off
or
(so) the zinc iodide would not be pure
allow (so) would have to separate iodine from zinc iodide
(c) moles $\mathrm{I}_{2}=\frac{0.5(00)}{254}=(0.00197)$
allow moles $12=0.00197$
allow 65 g Zn : 254 g l 2
mass $\mathrm{Zn}=0.00197 \times 65(\mathrm{~g})$
mass $=0.128(\mathrm{~g})$
allow an expression $\frac{0.5(00) \times 65}{254}$ (g) for the first 2
marks
(d) $\quad 92.0=\frac{12.5}{\text { maximum mass }} \times 100$
(maximum mass $=$) $\frac{100}{92.0} \times 12.5$
$=13.6(\mathrm{~g})$
allow 13.5869... (g)
(e) some product lost on separation
allow incomplete reaction
(f) $\quad \mathrm{Mr} \mathrm{ZnI2}=319$
moles needed
$\left(=0.1 \times \frac{250}{1000}\right)=0.025$
or
mass per dm3 $=31.9$ (g)
$($ mass $)=7.98(\mathrm{~g})$
allow 7.975 / 8.0 (g)
an answer of $7.975,7.98$ or $8.0(\mathrm{~g})$ scores 3 marks

Q12.
(a) produces $\mathrm{H}+$ / hydrogen ions in aqueous solution
(but is) only partially / slightly ionised
(b) indicator changes colour
from blue to yellow
allow from blue to green
(when) the acid and alkali are (exactly) neutralised or
(when) no excess of either acid or alkali
(c) pipette measures one fixed volume (accurately)
(but) burette measures variable volumes (accurately)
$\frac{12.10+12.15+12.15}{3}$
(mean titre $=$) 12.13(3) (cm3)
$($ moles $\mathrm{NaOH}=$ conc \times vol $)=0.00255$
$\left(\right.$ moles citric acid $=\frac{1}{3}$ moles NaOH$)=0.00085$
$($ conc acid $=$ moles $/ \mathrm{vol})=0.0701(\mathrm{~mol} / \mathrm{dm} 3)$
allow ecf from steps 1, 2, 3 and / or 4
allow an answer of 0.0701 (mol / dm 3) without working for 1 mark only

Q13.
(a) 36 cm 3
(b) all points correct
$\pm 1 / 2$ small square
allow 1 mark if 6 or 7 of the points are correct

2 best fit lines drawn

must not deviate towards anomalous point
allow 1 mark if 1 line correct
(c) The bung was not pushed in firmly enough.

The measuring cylinder was not completely over the delivery tube.
(d) as mass of lithium carbonate increases volume of gas produced increases
linear / (directly) proportional
(e) A gas / carbon dioxide is produced.
allow because the air in the tube expands
(f) any one from:

- Potassium carbonate does not decompose to produce carbon
- dioxide / a gas.

Potassium carbonate does not decompose at the temperature of the Bunsen
burner or the Bunsen burner is not hot enough to decompose potassium carbonate.

- When potassium carbonate decomposes a gas is not formed.

Q14.
(a) s
l
Answers must be in the correct order.
(b) A gas was lost from the flask
(c) Level 3 (5-6 marks):

A coherent method is described with relevant detail, and in correct sequence which demonstrates a broad understanding of the relevant scientific techniques and procedures. The steps in the method are logically ordered. The method would lead to the production of valid results. Level 2 (3-4 marks):

The bulk of the method is described with mostly relevant detail, which demonstrates a reasonable understanding of the relevant scientific
techniques and procedures. The method may not be in a completely logical sequence and may be missing some detail.
Level 1 (1-2 marks):
Simple statements are made which demonstrate some understanding of some of the relevant scientific techniques and procedures. The response may lack a logical structure and would not lead to the production of valid results.
0 marks:
No relevant content.
Indicative content

- \quad sulfuric acid in beaker (or similar)
- add copper carbonate one spatula at a time
- until copper carbonate is in excess or until no more
- effervescence occurs *
- filter using filter paper and funnel
- filter excess copper carbonate
- pour solution into evaporating basin / dish
- heat using Bunsen burner
- leave to crystallise / leave for water to evaporate / boil off water
- decant solution
- pat dry (using filter paper)
wear safety spectacles / goggles
*Students. may choose to use a named indicator until it turns a neutral colour, record the number of spatulas of copper carbonate added then repeat without the indicator.
(d) Total mass of reactants $=221.5$
159.5
221.5
allow ecf from step 1
72.0 (\%)
allow 72.0 with no working shown for 3 marks
(e) any one from:
- Important for sustainable development
- Economic reasons
- Waste products may be pollutants / greenhouse gases

Q15.
(a) add excess copper carbonate (to dilute hydrochloric acid)
accept alternatives to excess, such as 'until no more reacts'
filter (to remove excess copper carbonate)
reject heat until dry
heat filtrate to evaporate some water or heat to point of crystallisation accept leave to evaporate or leave in evaporating basin
leave to cool (so crystals form) until crystals form must be in correct order to gain 4 marks
(b) $\mathrm{MrCuCl} 2=134.5$ correct answer scores 4 marks
moles copper chloride $=($ mass $/ M r=11 / 134.5)=0.0817843866$
$\mathrm{MrCuCO}=123.5$

Mass CuCO3 ($=$ moles $\times \mathrm{M} 2=0.08178 \times 123.5$) $=10.1(00)$
accept 10.1 with no working shown for 4 marks
(c) $\frac{79.1}{100} \times 11.0$
or
11.0×0.791
8.70 (g)
accept $8.70(\mathrm{~g})$ with no working shown for 2 marks
(d) Total mass of reactants $=152.5$
134.5
152.5
allow ecf from step 1
88.20 (\%)
allow 88.20 with no working shown for 3 marks
(e) atom economy using carbonate lower because an additional product is made or carbon dioxide is made as well
allow ecf

Q16.
(a) (delivery) tube sticks into the acid
the acid would go into the water or the acid would leave the flask or go up the delivery tube
ignore no gas collected
(b) any one from:

- bung not put in firmly / properly
- gas lost before bung put in
- leak from tube
(c) all of the acid has reacted
(d) take more readings in range 0.34 g to 0.54 g
take more readings is insufficient ignore repeat
(e) 95

24000
0.00396
or
3.96×10
-3
accept 0.00396 or $3.96 \times 10-3$ with no working shown for 2 marks
(f) use a pipette / burette to measure the acid
because it is more accurate volume than a measuring cylinder
or
greater precision than a measuring cylinder
or
use a gas syringe to collect the gas
so it will not dissolve in water

or

 use a flask with a divideraccept description of tube suspended inside flask
so no gas escapes when bung removed
(g) they should be collected because carbon dioxide is left in flask at end and it has the same volume as the air collected / displaced

Q17.

(a) (sulfuric acid is) completely / fully ionised

In aqueous solution or when dissolved in water
(b) $\mathrm{H}+(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq}) \rightarrow \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
allow multiples
1 mark for equation
1 mark for state symbols
(c) adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask)
do not accept universal indicator
(adds the acid from a) burette
with swirling or dropwise towards the end point or until the indicator just changes colour
until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red
(for methyl orange) or blue to red (for litmus)
(d) titrations 3, 4 and 5
or
$\frac{27.05+27.15+27.15}{3}$
27.12 cm3
accept 27.12 with no working shown for 2 marks
allow 27.1166 with no working shown for 2 marks
(e) Moles $\mathrm{H} 2 \mathrm{SO} 4=$ conc $\times \mathrm{vol}=0.00271$
allow ecf from 8.4

Ratio $\mathrm{H} 2 \mathrm{SO} 4: \mathrm{NaOH}$ is $1: 2$
or
Moles $\mathrm{NaOH}=$ Moles $\mathrm{H} 2 \mathrm{SO} 4 \times 2=0.00542$

Concentration $\mathrm{NaOH}=\mathrm{mol} / \mathrm{vol}=0.00542 / 0.025=0.2168$
0.217 (mol / dm3)
accept 0.217 with no working for 4 marks
accept 0.2168 with no working for 3 marks
(f) $\frac{20}{1000} \times 0.18=$ no of moles
or
$0.15 \times 40 \mathrm{~g}$
0.144 (g)
accept 0.144 g with no working for 2 marks

Q18.
(a) $\mathrm{CaCO} 3+2 \mathrm{HCl} \rightarrow \mathrm{CaCl} 2+\mathrm{H} 2 \mathrm{O}+\mathrm{CO} 2$
allow 1 mark for correct formulae
(b) sensible scales, using at least half the grid for the points
all points correct
$\pm 1 / 2$ small square
allow 1 mark if 8 or 9 of the points are correct
best fit line
(c) steeper line to left of original
line finishes at same overall volume of gas collected
(d) acid particles used up
allow marble / reactant used up
so concentration decreases
allow surface area of marble decreases
so less frequent collisions / fewer collisions per second do not accept fewer collisions unqualified
so rate decreases / reaction slows down1(e) mass lost of 2.2 (g)time taken of270 sallow values in range 265-270
$\frac{2.2}{270}=0.00814814$allow ecf for values given for mass and time
0.00815 (g / s)
or
8.15×10^{-3}
allow 1 mark for correct calculation of value to 3 sig figs
accept 0.00815 or $8.15 \times 10-3$ with no working shown for 4 marks(f) correct tangent
eg 0.35 / 501
0.007allow values in range of $0.0065-0.0075$
7×10^{-3}

Q19.

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.
Examiners should also apply a 'best-fit' approach to the marking.
Level 3 (5-6 marks)
There is a description of titrations that would allow a comparison to be made between the two solutions of hydrochloric acid.
Level 2 (3-4 marks)
There is a description of an experimental method including addition of acid to alkali which may include an indicator or colour change and may include a measurement of volume.
Level 1 (1-2 marks)

There is a simple description of using some of the apparatus.
0 marks
No relevant content.
examples of chemistry points made in the response could include:

- acid in burette or flask
- alkali/sodium hydroxide or acid in burette or flask
- \quad volume of acid or alkali measured using the pipette
- indicator in flask white tile
- under the flask slow
- addition swirling/mixing
- colour change of indicator
- burette volume measured

